欢迎来到天天文库
浏览记录
ID:47941460
大小:41.00 KB
页数:3页
时间:2019-11-09
《2019-2020年高三上学期数学随堂练习1含答案》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2019-2020年高三上学期数学随堂练习1含答案2015-9-2一、填空题:1.对于函数,“是奇函数”是“的图象关于轴对称”的__________条件.(填“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”之一)充分不必要2.函数的定义域为_______________3.函数的单调增区间为______________4.设是定义在上周期为4的奇函数,若在区间,,则_________5.已知定义在上的奇函数和偶函数满足,且,若,则________6.若函数定义在上的奇函数,且在上是增函数,又,则不等式的
2、解集为_________7.已知函数若,使得成立,则实数的取值范围是.8.已知函数,若在区间上有且只有1个零点,则实数的取值范围是________.或二、解答题:9.已知函数为定义在上的奇函数,且当时,.(1)求的解析式;(2)若函数在区间上单调递增,求实数的取值范围.解:(1)(2)要使在上递增,则10.函数.(1)若函数和的图象关于轴对称,解不等式;(2)当时,不等式恒成立,求实数的取值范围.11.已知函数.(1)求函数的极值;(2)求函数(为实常数)的单调区间;(3)若不等式对一切正实数恒成立,求实数的取值范围.解:(1)g(
3、x)=lnx-x+1,g′(x)=-1=,当0<x<1时,g′(x)>0;当x>1时,g′(x)<0,可得g(x)在(0,1)上单调递增,在(1,+∞)上单调递减,故g(x)有极大值为g(1)=0,无极小值.(2)h(x)=lnx+
4、x-a
5、.当a≤0时,h(x)=lnx+x-a,h′(x)=1+>0恒成立,此时h(x)在(0,+∞)上单调递增;当a>0时,h(x)=①当x≥a时,h(x)=lnx+x-a,h′(x)=1+>0恒成立,此时h(x)在(a,+∞)上单调递增;②当0<x<a时,h(x)=lnx-x+a,h′(x)=-1=
6、.当0<a≤1时,h′(x)>0恒成立,此时h(x)在(0,a)上单调递增;当a>1时,当0<x<1时h′(x)>0,当1≤x<a时h′(x)≤0,所以h(x)在(0,1)上单调递增,在(1,a)上单调递减.综上,当a≤1时,h(x)的增区间为(0,+∞),无减区间;当a>1时,h(x)增区间为(0,1),(a,+∞);减区间为(1,a).(3)不等式(x2-1)f(x)≥k(x-1)2对一切正实数x恒成立,即(x2-1)lnx≥k(x-1)2对一切正实数x恒成立.当0<x<1时,x2-1<0;lnx<0,则(x2-1)lnx>0;
7、当x≥1时,x2-1≥0;lnx≥0,则(x2-1)lnx≥0.因此当x>0时,(x2-1)lnx≥0恒成立.又当k≤0时,k(x-1)2≤0,故当k≤0时,(x2-1)lnx≥k(x-1)2恒成立.下面讨论k>0的情形.当x>0且x≠1时,(x2-1)lnx-k(x-1)2=(x2-1).设h(x)=lnx-(x>0且x≠1),.记△=4(1-k)2-4=4(k2-2k).①当△≤0,即0<k≤2时,h′(x)≥0恒成立,故h(x)在(0,1)及(1,+∞)上单调递增.于是当0<x<1时,h(x)<h(1)=0,又x2-1<0,故
8、(x2-1)h(x)>0,即(x2-1)lnx>k(x-1)2.当x>1时,h(x)>h(1)=0,又x2-1>0,故(x2-1)h(x)>0,即(x2-1)lnx>k(x-1)2.又当x=1时,(x2-1)lnx=k(x-1)2.因此当0<k≤2时,(x2-1)lnx≥k(x-1)2对一切正实数x恒成立.②当△>0,即k>2时,设x2+2(1-k)x+1=0的两个不等实根分别为x1,x2(x1<x2).函数φ(x)=x2+2(1-k)x+1图像的对称轴为x=k-1>1,又φ(1)=4-2k<0,于是x1<1<k-1<x2.故当x∈
9、(1,k-1)时,φ(x)<0,即h′(x)<0,从而h(x)在(1,k-1)在单调递减;而当x∈(1,k-1)时,h(x)<h(1)=0,此时x2-1>0,于是(x2-1)h(x)<0,即(x2-1)lnx<k(x-1)2,因此当k>2时,(x2-1)lnx≥k(x-1)2对一切正实数x不恒成立.综上,当(x2-1)f(x)≥k(x-1)2对一切正实数x恒成立时,k≤2,即k的取值范围是(-∞,2].
此文档下载收益归作者所有