欢迎来到天天文库
浏览记录
ID:478457
大小:315.50 KB
页数:10页
时间:2017-08-09
《分块矩阵的初等变换及其应用文献综述》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、文献综述分块矩阵的初等变换及其应用一、前言部分在数学的矩阵理论中,一个分块矩阵或是分段矩阵就是将矩阵分割出较小的矩形矩阵,这些较小的矩阵就称为区块。换个方式来说,就是以较小的矩阵组合成一个矩阵。分块矩阵的分割原则是以水平线和垂直线进行划分。分块矩阵中,位在同一行(列)的每一个子矩阵,都拥有相同的列数(行数)。通过将大的矩阵通过分块的方式划分,并将每个分块看做另一个矩阵的元素,这样之后再参与运算,通常可以让计算变得清晰甚至得以大幅简化。例如,有的大矩阵可以通过分块变为对角矩阵或者是三角矩阵等特殊形式的矩阵。矩阵的分块是处理较高阶矩阵时常用的方法,用一些贯穿于矩阵的纵线和横线
2、将矩阵分成若干子块,使得阶数较高的矩阵化为阶数较低的分块矩阵。在运算中,我们有时把这些子块当作元素一样来处理,从而简化了表示,便于计算。分块矩阵初等变换是线性代数中重要而基本的运算,它在研究矩阵行列式、特征值、秩等各种性质及求矩阵的逆、解线性代数方程中有着广泛的应用。因此,如何直接对分块矩阵实行初等变换显得非常重要,本综述的目的就是讨论分块矩阵的初等变换及其应用[1]。二、主题部分2.1分块矩阵及其初等变换2.1.1分块矩阵的定义:将一个分块矩阵A用若干条纵线和横线分成许多块的低阶矩阵,每一块低阶矩阵称为A的子块。以子块为元素的矩阵A称为分块矩阵。我们将单位矩阵E分块:,
3、其中Er是ri阶单位矩阵(1
4、定义它们的加法为A+B=(Aij+Bij)条件:A,B为同阶矩阵而且Aij,Bij也为同阶矩阵.·设A=(Aij)rxt,B=(Bij)txs为两个分块矩阵,则定义它们的乘法为AXB=(Cij)其中的列数t等于B的行数而且AijxBij也存在.同样地,广义初等变换与广义初等矩阵可简单叙述如下:定义2 广义初等变换是对分块矩阵进行以下的变换的统称.·交换矩阵的两行(列);·将某行(列)左(右)乘可逆矩阵;·将某行(列)左(右)乘矩阵加到另一行(列)上;定义3 设EnXn为分块的单位矩阵,对其进行一次广义初等变换所得到的矩阵称为广义初等矩阵[4].例子1 广义初等矩阵具体形式
5、,,广义初等矩阵(变换)的作用如同一般的初等矩阵(变换),遵守"左行右列"原则.例子2 设那么,2.1.3分块矩阵的初等行(列)变换的定义[5]与普通矩阵的初等行变换类似,分块矩阵也有三种类型的初等行变换:1.把一个块行的左P倍(P是矩阵)加到另一个块行上;2.换两个块行的位置;3.用一个可逆矩阵左乘某一块行。2.1.4分块矩阵的初等变换与分块初等矩阵的关系把单位矩阵分块得到的矩阵经过一次分块矩阵的初等行(列)变换得到的矩阵称为分块初等矩阵。例如:,,是三种不同类型的分块初等矩阵(其中Q是可逆矩阵)通过直接计算可以验证:用分块初等矩阵左乘(右乘)一个分块矩阵,就相当于对这
6、个分块矩阵作了一次相应的分块矩阵的初等行(列)变换。分块矩阵的初等行(列)变换有直观的优点,用分块初等矩阵左乘(右乘)一个分块矩阵可以得到一个等式,把两者结合起来可以发挥出很大的威力。2.1.5分块矩阵的初等变换与矩阵的秩[6]由于分块初等矩阵是可逆矩阵,因此据可逆矩阵的性质和上述结论得到:分块矩阵的初等变换不改变矩阵的秩这个结论在求矩阵的秩时很有用。2.2分块矩阵的相关应用2.2.1利用矩阵分块的方法计算行列式[7]利用初等变换可使分块矩阵的行列式的计算得到简化.为讨论分块矩阵行列式的计算,先讨论分块初等矩阵的行列式,它们的行列式有下列的计算公式。引理分块初等矩阵的行列
7、式有以下性质:(1)︱E(i,j)︱=(-1)x,其中i=ri(ri+1+…+rj)+rj(ri+1+…+rj-1),(i8、A9、i,j两行(列),行列式变为(-1)x10、A11、,其中i=ri(ri+1+…+rj)+rj(ri+1+…+rj-1),(i12、A13、的相邻两行(列),行列式变为(-1)rr+14、A
8、A
9、i,j两行(列),行列式变为(-1)x
10、A
11、,其中i=ri(ri+1+…+rj)+rj(ri+1+…+rj-1),(i12、A13、的相邻两行(列),行列式变为(-1)rr+14、A
12、A
13、的相邻两行(列),行列式变为(-1)rr+
14、A
此文档下载收益归作者所有