欢迎来到天天文库
浏览记录
ID:47809026
大小:655.00 KB
页数:13页
时间:2019-11-15
《2019-2020学年高二数学上学期第四次月考试题 理(含解析)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2019-2020学年高二数学上学期第四次月考试题理(含解析)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集,集合,,则()A.B.C.D.【答案】C【解析】因为全集,集合或,,,故选C.2.已知点在双曲线的一条渐近线上,则()A.B.3C.2D.【答案】B【解析】双曲线的一条渐近线方程是,将代入,得,,即故选B.3.下列命题错误的是()A.命题“若,则”的逆命题为“若,则”B.对于命题,使得,则,则C.“”是“”的充分不必要条件D.若为假命题,则均为假命题【答案】D【解析】对于,命题“若,则”的逆否命题为“
2、若,则”,满足逆否命题的形式,所以正确;对于,对于命题,使得,则,则,满足特称命题的否定形式,所以正确;对于,“”是“”的充分不必要条件,因为时,也成立,所以正确;对于,若为假命题,则均为假命题,显然不正确,因为一个命题是假命题,则也为假命题,所以不正确,故选D.4.《算法统综》是明朝程大位所著数学名著,其中有这样一段表述:“远看巍巍塔七层,红光点点倍加增,共灯三百八十一”,其意大致为:有一七层宝塔,每层悬挂的红灯数为上一层的两倍,共有381盏灯,则塔从上至下的第三层有()盏灯.A.14B.12C.10D.8【答案】B【解析】设第一层有a盏灯,则由题意知第一层至第七层的灯的盏数
3、构成一个以a1为首项,以为公比的等比数列,∴,解得a1=192,∴a5=a1×()4=192×=12,故选:B.5.已知点是抛物线上的一个动点,则点到点的距离与点到轴的距离之和的最小值为()A.2B.C.D.【答案】C【解析】抛物线,可得:y2=4x,抛物线的焦点坐标(1,0).依题点P到点A(0,1)的距离与点P到y轴的距离之和的最小值,就是P到(0,1)与P到该抛物线准线的距离的和减去1.由抛物线的定义,可得则点P到点A(0,1)的距离与P到该抛物线焦点坐标的距离之和减1,可得:﹣1=.故选:C.6.已知,则下列三个数,,()A.都大于6B.至少有一个不大于6C.都小于6D
4、.至少有一个不小于6【答案】D【解析】假设3个数,,都小于6,则故选D.点睛:本题考查反证法,考查进行简单的合情推理,属于中档题,正确运用反证法是关键.7.动圆与圆外切,与圆内切,则动圆圆心的轨迹方程是()A.B.C.D.【答案】B........................因此动圆圆心M的轨迹是以为焦点的椭圆,所以,选B.点睛:求与圆有关的轨迹问题时,根据题设条件的不同常采用以下方法:①直接法:直接根据题目提供的条件列出方程.②定义法:根据圆、直线等定义列方程.③几何法:利用圆的几何性质列方程.④代入法:找到要求点与已知点的关系,代入已知点满足的关系式等.8.程序框图如图
5、所示,当时,输出的的值为()A.26B.25C.24D.23【答案】C【解析】由已知中的程序框图可知:该程序的功能是计算S=+++…+=的值,∵A=,退出循环的条件为S≥A,当k=24时,=满足条件,故输出k=24,故选:C点睛:算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括顺序结构、条件结构、循环结构,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.9.淮北一中艺术节对射影类的四项参赛作品,只评一项一等奖,在评奖揭晓前,甲、乙、丙、丁四位同学对这四项参赛作品预测如下:甲说:“是或
6、作品获得一等奖”;乙说:“作品获得一等奖”;丙说:“两项作品未获得一等奖”;丁说:“是作品获得一等奖”.若这四位同学中只有两位说的话是对的,则获得一等奖的作品是()A.作品B.作品C.作品D.作品【答案】B【解析】根据题意,A,B,C,D作品进行评奖,只评一项一等奖,假设参赛的作品A为一等奖,则甲、乙、丙、丁的说法都错误,不符合题意;假设参赛的作品B为一等奖,则甲、丁的说法都错误,乙、丙的说法正确,符合题意;假设参赛的作品C为一等奖,则乙的说法都错误,甲、丙、丁的说法正确,不符合题意;假设参赛的作品D为一等奖,则乙、丙、丁的说法都错误,甲的说法正确,不符合题意;故获得参赛的作品
7、B为一等奖;故选:B.10.设满足约束条件,若目标函数()的最大值为2,则的最小值为()A.2B.C.4D.【答案】A【解析】作出不等式组表示的可行域如下图所示。因为,所以当x,y均取最大值时z取最大值,即直线过点时,Z取最大值,即.故选A.点睛:线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:一、准确无误地作出可行域;二、画标准函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三、一般情况下,目标函数的最大或最小会在可行域的端点或边界上取得.11.将正
此文档下载收益归作者所有