欢迎来到天天文库
浏览记录
ID:47765220
大小:4.84 MB
页数:19页
时间:2019-11-11
《 河南省信阳市2018-2019学年高二上学期期末考试数学试题(理)(含答案解析)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2018-2019学年普通高中高二上学期期末教学质量检测数学试题(理)第Ⅰ卷(选择题共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.命题“存在一个无理数,它的平方是有理数”的否定是()A.任意一个有理数,它的平方是有理数B.任意一个无理数,它的平方不是有理数C.存在一个有理数,它的平方是有理数D.存在一个无理数,它的平方不是无理数【答案】B【解析】【分析】依据特称命题“”的否定为“”.【详解】命题“存在一个无理数,它的平方是有理数”的否定是“任意一个无理数,它的平方不是有理数”,答案为B【点
2、睛】本小题考查了特称命题的否定,注意与否命题区别,属于基础题.2.已知空间向量,,,且,则实数的值为()A.5B.-5C.5或-5D.-10或10【答案】C【解析】【分析】利用空间向量共线定理以及向量模的坐标表示,建立方程组,即可求得z的值.【详解】因为,所以存在,使得,又因为,而,则,解得或,所以答案为C.【点睛】本小题主要考查空间向量共线定理以及向量模的坐标表示,属于中档题,具体如下:设(),则存在唯一的,使得,即;.3.设,,,且,则下列不等式成立的是()A.B.C.D.【答案】C【解析】【分析】给选取适当的值即可判断A、B、D项不正确,而利用对应函数的单
3、调性即可证明C选项正确.【详解】A选项:令,则,但,不正确;B选项:令,则,但,不正确;C选项:因为在R上为增函数,,所以,正确;D选项:令,则,但,不正确;答案为C.【点睛】本题主要考查大小比较问题,常用的方法有:(1)利用不等式的性质;(2)特殊值法;(3)作差法;(4)作商法;(5)中间值法;(6)单调性法.4.下列抛物线中,原点到其焦点距离最小的是()A.B.C.D.【答案】B【解析】【分析】先将每一项转化为标准的抛物线方程,然后分别求出值,再对应求出原点到其焦点的距离,最后各项进行比较,即可得出距离最小的选项.【详解】A选项:因为,得,则原点到焦点的距
4、离为;B选项:因为,即,则,得,则原点到焦点的距离为;C选项:因为,得,则原点到焦点的距离为;D选项:因为,得,则原点到焦点的距离为;因为,所以答案为B.【点睛】主要考查抛物线的标准方程以及P值的几何意义,属于基础题.5.设公差不为零的等差数列的前项和为,,若,,成等比数列,则的值为()A.-3B.3C.8D.-24【答案】D【解析】【分析】利用等差数列的通项公式,前项和公式以及等比中项的性质建立关于和的方程组,即可求出和,然后利用前项和公式求出.【详解】设的公差为,因为,成等比数列,所以,而,解得,所以,答案为D.【点睛】等差(等比)数列基本量求解问题主要的方
5、法:(1)方程组法:根据题目的条件,结合通项公式、求和公式,将问题转化为关于首项和公差(公比)的方程组,然后求解.(2)性质法:灵活运用通项公式、求和公式以及相关性质公式,如等差数列的性质、若,则等,求解数列基本量问题.6.已知点的坐标满足条件点,则的最小值为()A.2B.C.D.1【答案】A【解析】【分析】根据点坐标得到点满足的参数方程,从而得到点所在的直线方程,因此将求最小值问题转化为求可行域上的点到直线的最小距离,然后运用数形结合得到可行域内点B(1,0)到直线距离最小,从而求出的最小值.【详解】因为,则点满足的参数方程为(为参数),消去参数得到普通方程为
6、:,则问题转化为求可行域上的点到直线的最小距离,如图:由图可知当点与B点重合时到直线的距离最小,而B点为(1,0),B到的距离为,所以,答案为A.【点睛】主要考查线性规划问题,同时也考查了参数方程与普通方程的互化。这类型题的关键在于寻找出目标函数的几何意义,然后利用数形结合的方法寻找出最优解,求出最值,属于中档题.7.设,则“”是“”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A【解析】【分析】分别解出两个条件“”与“”的范围和,然后判断集合和的关系,即可判断充分条件和必要条件.【详解】因为,解得,设,因为,解得或,令{
7、
8、或},因为,所以“”是“”的充分不必要条件,答案为A.【点睛】主要考查充分条件和必要条件的判断以及不等式的求解,属于中档题.而充分条件和必要条件的判断常用的方法有:(1)定义法:分别判断命题“若,则”,“若,则”的真假,即可得到充分条件和必要条件的判断.(2)集合关系法:分别解出两个条件与的范围和,然后根据集合集合和的关系,即可得到充分条件和必要条件的判断.8.已知双曲线的一条渐近线平行于直线,双曲线的一个焦点在直线上,则双曲线的方程为()A.B.C.D.【答案】B【解析】【分析】由渐近线与直线平行可知其斜率相等,可以得到,再由条件“双曲线的一个焦点在直线上”
9、可以求得一个焦点坐标,从
此文档下载收益归作者所有