欢迎来到天天文库
浏览记录
ID:47598163
大小:182.36 KB
页数:10页
时间:2019-09-24
《2018年秋浙教版八年级数学上册第3章自我评价试卷含答案》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、第3章自我评价—、选择题(每小题2分,共20分)1.下列数值中,不是不等式5xN2x+9的解的是(D)A.5B.4C.3D.22.若a>b,则下列不等式中,不成立的是(B)A.q—3>/?—3B・—3a>—3bC・号>£D.—a<—b3.不等式一2x>*的解是(A)A.x<—B.x<—1C.x>—*D.x>—14.不等式3(x—1)W5—x的非负整数解有(C)A.1个B.2个C.3个D・4个5.在等腰三角形ABC屮,AB=AC,其周长为20cm,则AB边的取值范围是(B)A.lcm2、cmC・4cmVABV8cmD.4cm20—2x>0〔20—2r+x>x‘/.5cmVABV10cm.x>a»6.不等式组的整数解有3个,则a的取值范围是(A)x<3A.—lWd<0B・一WOC・一lWxlD・一IVqVOx>a,【解】不等式组的解为a3、的一组数的和是(B)A.39B.36C.35D.34【解】设这三个正整数分别为x~],x,兀+1,则(x-l)+x+(x+l)<39,Ax<13・Vx为正整数,・••当x=l2时,三个连续正整数的和最大,三个连续正整数的和为11+12+13=36.2.若关于x的不等式3x+l4、5—3x20‘3.若关于x的不等式组、有实数解'则实数m的取值范围是(A)lx—mNOA一5“5A.mW亍B.m<^C.m>^D.加鼻亍[5—3x^0»‘【解】解不等式组<、得<3I兀—心0,鼻.•・•不等式组有实数解,・••加w5、.4.某市某化工厂现有A种原料52kg,B种原料64kg,现用这些原料生产甲、乙两种产品共20件.己知生产1件甲种产品需要4种原料3kg,B种原料2kg;生产1件乙种产品需要A种原料2kg,3种原料4kg,则生产方案的种数为(B)A.4B.5C.6D.6【解】设生产甲产品兀件,则生产乙产品6、(20-%)件,f3x+2(20—兀)W52,由题意,得<[Zx+4(20—兀)W64,解得8WxW12.・・*为整数,Ax=8,9,10,11,12,・•・共有5种生产方案.二、填空题(每小题2分,共20分)1.不等式3x+l<-2的解是XV—1.2.已知x3‘4.若关于x的不等式组<的解为1VxV3‘则a的值为4.la—x>1abf(第15题)x>a,fx7、解如图所示,则关于x的不等式组―的解是lx>bIxWbx6.已知“x的3倍大于5,且x的一半与1的差不大于2”,则x的取值范围是*vxW6."3x>5,【解】由题意,得彳1解得舟vxW6・7fx—y=3—n,7.已知关于x的方程彳的解满足,(0l,则m的取xlx+2y=5n2?值范围是討屿.[x=n+2‘【解】解方程组‘得]ly=2n—1.•・・y>l,・・・2n-l>l,即n>l.又V08、1.己知x,y满足2—4y=8.当OWxWl时,y的取值范围是l^w9、.【解】V2X・4y=8,・・・公・22y=23,/.x+2y=3,/.x=3—2y.•.•OWxWl,・・・0W3-2yWl,・・・lWyw10、.2.某班有48名学生会下彖棋或围棋,会下彖棋的人数比会下围棋的人数的2倍少3人,两种棋都会下的至多有9人,但不少于5人,则会下围棋的有19或20人.【解】设会下围棋的有x人,则会下象棋的有(2x-3)人.由题意,得5Wx+(2x—3)—48W9,解得普WxW20.・.・x为正整数,・・・x=19或20.311、.输入一个数,按如图所示的程序进行运算.(第20题)规定:程序运行到“判断结果是否大于35”为一次运算•若运算进行了5次才停止,则x的取值范围是4VxW5.【解】第1次运算的结果是2x-3;第2次运算的结果是2X(2x-3)-3=4x-9;第3次运算的结果是2X(4x-9)-3=8x-21;第4次运算的结果是2X(8x-21)-3=16x-45
2、cmC・4cmVABV8cmD.4cm20—2x>0〔20—2r+x>x‘/.5cmVABV10cm.x>a»6.不等式组的整数解有3个,则a的取值范围是(A)x<3A.—lWd<0B・一WOC・一lWxlD・一IVqVOx>a,【解】不等式组的解为a3、的一组数的和是(B)A.39B.36C.35D.34【解】设这三个正整数分别为x~],x,兀+1,则(x-l)+x+(x+l)<39,Ax<13・Vx为正整数,・••当x=l2时,三个连续正整数的和最大,三个连续正整数的和为11+12+13=36.2.若关于x的不等式3x+l4、5—3x20‘3.若关于x的不等式组、有实数解'则实数m的取值范围是(A)lx—mNOA一5“5A.mW亍B.m<^C.m>^D.加鼻亍[5—3x^0»‘【解】解不等式组<、得<3I兀—心0,鼻.•・•不等式组有实数解,・••加w5、.4.某市某化工厂现有A种原料52kg,B种原料64kg,现用这些原料生产甲、乙两种产品共20件.己知生产1件甲种产品需要4种原料3kg,B种原料2kg;生产1件乙种产品需要A种原料2kg,3种原料4kg,则生产方案的种数为(B)A.4B.5C.6D.6【解】设生产甲产品兀件,则生产乙产品6、(20-%)件,f3x+2(20—兀)W52,由题意,得<[Zx+4(20—兀)W64,解得8WxW12.・・*为整数,Ax=8,9,10,11,12,・•・共有5种生产方案.二、填空题(每小题2分,共20分)1.不等式3x+l<-2的解是XV—1.2.已知x3‘4.若关于x的不等式组<的解为1VxV3‘则a的值为4.la—x>1abf(第15题)x>a,fx7、解如图所示,则关于x的不等式组―的解是lx>bIxWbx6.已知“x的3倍大于5,且x的一半与1的差不大于2”,则x的取值范围是*vxW6."3x>5,【解】由题意,得彳1解得舟vxW6・7fx—y=3—n,7.已知关于x的方程彳的解满足,(0l,则m的取xlx+2y=5n2?值范围是討屿.[x=n+2‘【解】解方程组‘得]ly=2n—1.•・・y>l,・・・2n-l>l,即n>l.又V08、1.己知x,y满足2—4y=8.当OWxWl时,y的取值范围是l^w9、.【解】V2X・4y=8,・・・公・22y=23,/.x+2y=3,/.x=3—2y.•.•OWxWl,・・・0W3-2yWl,・・・lWyw10、.2.某班有48名学生会下彖棋或围棋,会下彖棋的人数比会下围棋的人数的2倍少3人,两种棋都会下的至多有9人,但不少于5人,则会下围棋的有19或20人.【解】设会下围棋的有x人,则会下象棋的有(2x-3)人.由题意,得5Wx+(2x—3)—48W9,解得普WxW20.・.・x为正整数,・・・x=19或20.311、.输入一个数,按如图所示的程序进行运算.(第20题)规定:程序运行到“判断结果是否大于35”为一次运算•若运算进行了5次才停止,则x的取值范围是4VxW5.【解】第1次运算的结果是2x-3;第2次运算的结果是2X(2x-3)-3=4x-9;第3次运算的结果是2X(4x-9)-3=8x-21;第4次运算的结果是2X(8x-21)-3=16x-45
3、的一组数的和是(B)A.39B.36C.35D.34【解】设这三个正整数分别为x~],x,兀+1,则(x-l)+x+(x+l)<39,Ax<13・Vx为正整数,・••当x=l2时,三个连续正整数的和最大,三个连续正整数的和为11+12+13=36.2.若关于x的不等式3x+l4、5—3x20‘3.若关于x的不等式组、有实数解'则实数m的取值范围是(A)lx—mNOA一5“5A.mW亍B.m<^C.m>^D.加鼻亍[5—3x^0»‘【解】解不等式组<、得<3I兀—心0,鼻.•・•不等式组有实数解,・••加w5、.4.某市某化工厂现有A种原料52kg,B种原料64kg,现用这些原料生产甲、乙两种产品共20件.己知生产1件甲种产品需要4种原料3kg,B种原料2kg;生产1件乙种产品需要A种原料2kg,3种原料4kg,则生产方案的种数为(B)A.4B.5C.6D.6【解】设生产甲产品兀件,则生产乙产品6、(20-%)件,f3x+2(20—兀)W52,由题意,得<[Zx+4(20—兀)W64,解得8WxW12.・・*为整数,Ax=8,9,10,11,12,・•・共有5种生产方案.二、填空题(每小题2分,共20分)1.不等式3x+l<-2的解是XV—1.2.已知x3‘4.若关于x的不等式组<的解为1VxV3‘则a的值为4.la—x>1abf(第15题)x>a,fx7、解如图所示,则关于x的不等式组―的解是lx>bIxWbx6.已知“x的3倍大于5,且x的一半与1的差不大于2”,则x的取值范围是*vxW6."3x>5,【解】由题意,得彳1解得舟vxW6・7fx—y=3—n,7.已知关于x的方程彳的解满足,(0l,则m的取xlx+2y=5n2?值范围是討屿.[x=n+2‘【解】解方程组‘得]ly=2n—1.•・・y>l,・・・2n-l>l,即n>l.又V08、1.己知x,y满足2—4y=8.当OWxWl时,y的取值范围是l^w9、.【解】V2X・4y=8,・・・公・22y=23,/.x+2y=3,/.x=3—2y.•.•OWxWl,・・・0W3-2yWl,・・・lWyw10、.2.某班有48名学生会下彖棋或围棋,会下彖棋的人数比会下围棋的人数的2倍少3人,两种棋都会下的至多有9人,但不少于5人,则会下围棋的有19或20人.【解】设会下围棋的有x人,则会下象棋的有(2x-3)人.由题意,得5Wx+(2x—3)—48W9,解得普WxW20.・.・x为正整数,・・・x=19或20.311、.输入一个数,按如图所示的程序进行运算.(第20题)规定:程序运行到“判断结果是否大于35”为一次运算•若运算进行了5次才停止,则x的取值范围是4VxW5.【解】第1次运算的结果是2x-3;第2次运算的结果是2X(2x-3)-3=4x-9;第3次运算的结果是2X(4x-9)-3=8x-21;第4次运算的结果是2X(8x-21)-3=16x-45
4、5—3x20‘3.若关于x的不等式组、有实数解'则实数m的取值范围是(A)lx—mNOA一5“5A.mW亍B.m<^C.m>^D.加鼻亍[5—3x^0»‘【解】解不等式组<、得<3I兀—心0,鼻.•・•不等式组有实数解,・••加w
5、.4.某市某化工厂现有A种原料52kg,B种原料64kg,现用这些原料生产甲、乙两种产品共20件.己知生产1件甲种产品需要4种原料3kg,B种原料2kg;生产1件乙种产品需要A种原料2kg,3种原料4kg,则生产方案的种数为(B)A.4B.5C.6D.6【解】设生产甲产品兀件,则生产乙产品
6、(20-%)件,f3x+2(20—兀)W52,由题意,得<[Zx+4(20—兀)W64,解得8WxW12.・・*为整数,Ax=8,9,10,11,12,・•・共有5种生产方案.二、填空题(每小题2分,共20分)1.不等式3x+l<-2的解是XV—1.2.已知x3‘4.若关于x的不等式组<的解为1VxV3‘则a的值为4.la—x>1abf(第15题)x>a,fx7、解如图所示,则关于x的不等式组―的解是lx>bIxWbx6.已知“x的3倍大于5,且x的一半与1的差不大于2”,则x的取值范围是*vxW6."3x>5,【解】由题意,得彳1解得舟vxW6・7fx—y=3—n,7.已知关于x的方程彳的解满足,(0l,则m的取xlx+2y=5n2?值范围是討屿.[x=n+2‘【解】解方程组‘得]ly=2n—1.•・・y>l,・・・2n-l>l,即n>l.又V08、1.己知x,y满足2—4y=8.当OWxWl时,y的取值范围是l^w9、.【解】V2X・4y=8,・・・公・22y=23,/.x+2y=3,/.x=3—2y.•.•OWxWl,・・・0W3-2yWl,・・・lWyw10、.2.某班有48名学生会下彖棋或围棋,会下彖棋的人数比会下围棋的人数的2倍少3人,两种棋都会下的至多有9人,但不少于5人,则会下围棋的有19或20人.【解】设会下围棋的有x人,则会下象棋的有(2x-3)人.由题意,得5Wx+(2x—3)—48W9,解得普WxW20.・.・x为正整数,・・・x=19或20.311、.输入一个数,按如图所示的程序进行运算.(第20题)规定:程序运行到“判断结果是否大于35”为一次运算•若运算进行了5次才停止,则x的取值范围是4VxW5.【解】第1次运算的结果是2x-3;第2次运算的结果是2X(2x-3)-3=4x-9;第3次运算的结果是2X(4x-9)-3=8x-21;第4次运算的结果是2X(8x-21)-3=16x-45
7、解如图所示,则关于x的不等式组―的解是lx>bIxWbx6.已知“x的3倍大于5,且x的一半与1的差不大于2”,则x的取值范围是*vxW6."3x>5,【解】由题意,得彳1解得舟vxW6・7fx—y=3—n,7.已知关于x的方程彳的解满足,(0l,则m的取xlx+2y=5n2?值范围是討屿.[x=n+2‘【解】解方程组‘得]ly=2n—1.•・・y>l,・・・2n-l>l,即n>l.又V08、1.己知x,y满足2—4y=8.当OWxWl时,y的取值范围是l^w9、.【解】V2X・4y=8,・・・公・22y=23,/.x+2y=3,/.x=3—2y.•.•OWxWl,・・・0W3-2yWl,・・・lWyw10、.2.某班有48名学生会下彖棋或围棋,会下彖棋的人数比会下围棋的人数的2倍少3人,两种棋都会下的至多有9人,但不少于5人,则会下围棋的有19或20人.【解】设会下围棋的有x人,则会下象棋的有(2x-3)人.由题意,得5Wx+(2x—3)—48W9,解得普WxW20.・.・x为正整数,・・・x=19或20.311、.输入一个数,按如图所示的程序进行运算.(第20题)规定:程序运行到“判断结果是否大于35”为一次运算•若运算进行了5次才停止,则x的取值范围是4VxW5.【解】第1次运算的结果是2x-3;第2次运算的结果是2X(2x-3)-3=4x-9;第3次运算的结果是2X(4x-9)-3=8x-21;第4次运算的结果是2X(8x-21)-3=16x-45
8、1.己知x,y满足2—4y=8.当OWxWl时,y的取值范围是l^w
9、.【解】V2X・4y=8,・・・公・22y=23,/.x+2y=3,/.x=3—2y.•.•OWxWl,・・・0W3-2yWl,・・・lWyw
10、.2.某班有48名学生会下彖棋或围棋,会下彖棋的人数比会下围棋的人数的2倍少3人,两种棋都会下的至多有9人,但不少于5人,则会下围棋的有19或20人.【解】设会下围棋的有x人,则会下象棋的有(2x-3)人.由题意,得5Wx+(2x—3)—48W9,解得普WxW20.・.・x为正整数,・・・x=19或20.3
11、.输入一个数,按如图所示的程序进行运算.(第20题)规定:程序运行到“判断结果是否大于35”为一次运算•若运算进行了5次才停止,则x的取值范围是4VxW5.【解】第1次运算的结果是2x-3;第2次运算的结果是2X(2x-3)-3=4x-9;第3次运算的结果是2X(4x-9)-3=8x-21;第4次运算的结果是2X(8x-21)-3=16x-45
此文档下载收益归作者所有