斜边、直角边判定定理

斜边、直角边判定定理

ID:47576933

大小:48.00 KB

页数:3页

时间:2019-09-20

斜边、直角边判定定理_第1页
斜边、直角边判定定理_第2页
斜边、直角边判定定理_第3页
资源描述:

《斜边、直角边判定定理》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、12.2直角三角形全等判定(4)教学内容本节课主要内容是探究直角三角形的判定方法.教学目标1.知识与技能在操作、比较中理解直角三角形全等的过程,并能用于解决实际问题.2.过程与方法经历探索直角三角形全等判定的过程,掌握数学方法,提高合情推理的能力.3.情感、态度与价值观培养几何推理意识,激发学生求知欲,感悟几何思维的内涵.重点难点1.重点:理解利用“斜边、直角边”来判定直角三角形全等的方法.2.难点:培养有条理的思考能力,正确使用“综合法”表达.教具准备投影仪、幻灯片、直尺、圆规.教学方法采用“问题探究”的教学

2、方法,让学生在互动交流中领会知识.教学过程一、回顾交流,迁移拓展【问题探究】图1是两个直角三角形,除了直角相等的条件,还要满足几个条件,这两个直角三角形才能全等?【教师活动】操作投影仪,提出“问题探究”,组织学生讨论.【学生活动】小组讨论,发表意见:“由三角形全等条件可知,对于两个直角三角形,满足一边一锐角对应相等,或两直角边对应相等,这两个直角三角形就全等了.”【媒体使用】投影显示“问题探究”.【教学形式】分四人小组,合作、讨论.【情境导入】如图2所示.舞台背景的形状是两个直角三角形,工作人员想知道这两个直角

3、三角形是否全等,但每个三角形都有一条直角边被花盆遮住无法测量.(1)你能帮他想个办法吗?(2)如果他只带了一个卷尺,能完成这个任务吗?工作人员测量了每个三角形没有被遮住的直角边和斜边,发现它们分别对应相等,于是他就肯定“两个直角三角形是全等的”,你相信他的结论吗?【思路点拨】(1)学生可以回答去量斜边和一个锐角,或直角边和一个锐角,但对问题(2)学生难以回答.此时,教师可以引导学生对工作人员提出的办法及结论进行思考,并验证它们的方法,从而展开对直角三角形特殊条件的探索.【教师活动】操作投影仪,提出问题,引导学生

4、思考、验证.【学生活动】思考问题,探究原理.做一做如课本图11.2─11:任意画出一个Rt△ABC,使∠C=90°,再画一个Rt△A′B′C′,使B′C′=BC,A′B′=AB,把画好的Rt△A′B′C′剪下,放到Rt△ABC上,它们全等吗?【学生活动】画图分析,寻找规律.如下:规律:斜边和一条直角边对应相等的两个直角三角形全等(简写成“斜边、直角边”或“HL”).画一个Rt△A′B′C′,使B′C′=BC,AB=AB;1.画∠MC′N=90°。2.在射线C′M上取B′C′BC。3.以B′为圆心,AB为半径画弧

5、,交射线C′N于点A′。4.连接A′B′。二、范例点击,应用所学【例4】如课本图12.2─12,AC⊥BC,BD⊥AD,AC=BD,求证BC=AD.【思路点拨】欲证BC=AD,首先应寻找和这两条线段有关的三角形,这里有△ABD和△BAC,△ADO和△BCO,O为DB、AC的交点,经过条件的分析,△ABD和△BAC具备全等的条件.【教师活动】引导学生共同参与分析例4.证明:∵AC⊥BC,BD⊥BD,∴∠C与∠D都是直角.在Rt△ABC和Rt△BAD中,AC=BD,AB=BA∴Rt△ABC≌Rt△BAD(HL).∴

6、BC=AD.【学生活动】参与教师分析,提出自己的见解.【评析】在证明两个直角三角形全等时,要防止学生使用“SSA”来证明.【媒体使用】投影显示例4.三、随堂练习,巩固深化课本P43第练习1、2题.四、课堂总结,发展潜能本节课通过动手操作,在合作交流、比较中共同发现问题,培养直观发现问题的能力,在反思中发现新知,体会解决问题的方法.通过今天的学习和对前面三角形全等条件的探求,可知判定直角三角形全等有五种方法.(教师让学生讨论归纳)五、布置作业,专题突破课本P44习题12.2第7,8题.

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。