资源描述:
《_函数的凸性及应用开题报告》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、函数的凸性及应用开题报告开题报告函数的凸性及应用一、选题的背景、意义(所选课题的历史背景、国内外研究现状和发展趋势)凸函数具有一些非常优良的性质[1],有着较好的几何和代数性质,在数学各个领域中都有着广泛的应用。1905年丹麦数学家Jensen首次给出了凸函数的定义,开创了凸函数研究的先河,经过近百年努力,凸函数的研究在各个方面正得到长足的发展,其中,凸函数的判据研究已接近完善,在现代学习和生活中的重要性已经不断的凸显出来。凸分析是近年来凹凸函数发展起来的一门应用十分广泛的数学支,尤其是在最优化理论方面的应用更为突出,人们对凸分析的自
2、身理论发展也进行了广泛的深入研究,使得凸函数的性质也得到了较好的发展。在凸规划理论、尤其是非线性最优化中,函数的凸性分析是最基本的,又是最重要的,近年来,研究函数各种凸性的文献越来越多。凸函数是一类重要的函数。对函数凹凸性的研究,在数学的多个分支都有用处。特别是在函数图形的描绘和不等式的推导方面,凸函数都有着十分重要的作用。同样凸函数是数学分析中的一个重要概念,它涉及了许多数学命题的讨论证明和应用,而且在现代优化学、运筹学、管理学、和工程测绘学等多个学科有着重要的意义。函数凸性的应用显著地体现在求最值、不等式的证明上。不等式的证明方法
3、很多,技巧性强,函数凸性是函数在区间上变化的整体形态,是研究不等式的重要方法之一,巧妙的构造凸函数,可以简单轻快得证明不等式。凸函数在数学规划中有着广泛的应用背景,一些常见的不等式都可以从函数的凸性中导出。在不等式的研究中,凸函数所发挥的作用是无可替代的。与凸函数有关的不等式是基础数学理论的重要工具,尤其在不等式的证明中发挥的作用是无可替代的,其中Jensen不等式与Hadamard不等式更是起到了重要的作用。Jensen不等式通常用来证明有限不等式,它是将无穷项求和与积分联系起来的重要桥梁。利用Hadamard不等式可以对两个正数的
4、几何平均数与算数平均数加细。凸函数是一类非常重要的函数,应用函数的凸性,不仅可以科学、准确的描述函数的图像,而且也有证明不等式的凸函数方法,同时,凸函数也是优化问题中重要的研究对象,它研究的内容非常丰富,研究的结果也在许多领域得到了广泛的应用。二、研究的基本内容与拟解决的主要问题本文首先对凸函数定义进行介绍,凸函数的等价性质进行了概述;接下来介绍了凸函数的基本性质,然后由此延伸,进一步提出凸函数的应用,主要集中在下面几方面的应用:凸函数在Hadamard不等式证明中的应用,凸函数在证明Jensen不等式时的应用,凸函数在分析不等式中的
5、应用等方面进行了讨论。2.1凸函数的定义2.1.1凸函数一些基本定义通过数学分析[2]的学习,对于函数和的图像,我们很容易得出它们之间的不同点:曲线上任意两点间的弧段总在这两点连线的下方;而曲线则相反,在任意两点间的弧段总在这两点连线的上方。通过这两个函数,我们把前一种特性的曲线称为凸的,后一种为凹的。对于凸的我们称其函数为凸函数。葛丽萍[3]给出了凸函数的基本定义[3]:设为定义在区间上的函数,若对上的任意两点,和任意实数总有,则称为上的凸函数。2.1.2严格凸函数的定义江芹,陈文略[4]给出了严格凸函数的定义并且讨论了区间上严格凸
6、函数的判定方法。定义:凸函数的定义为函数满足以下不等式,为区间上的函数,,为上的任意两点和任意实数。当上面的不等式变为时,其余条件不变,该函数称为严格凸函数。2.1.3凸函数的等价描述林银河[5]详细论述了凸函数的等价描述,由此得出:若在上有定义,则以下3个命题等价:在上为凸函数;,,有;,且不全为零,有。其中命题就是著名的Jensen不等式。在Jensen不等式中令就得到如下定义:设在区间上有定义,称为上的凸函数,当且仅当有。葛丽萍[3]介绍了函数在区间上可导的等价条件:若为区间上的可导函数,可得出以下等价条件。为上的凸;为上的增函
7、数;对上的任意两点,,有。2.2凸函数的一些性质2.2.1凸函数的连续性凸函数是数学分析中的一类重要函数,而函数的连续性又是函数性态的一项基本而又重要的特征。由于Jensen定义中并没有对函数作出连续性及可导性假设,Jensen意义下凸函数并不一定是连续函数,而连续函数也不一定是凸函数,选取实际问题中大量存在的区间上连续的函数作为讨论对象,从凸函数的定义出发,研究连续函数与凸函数的关系。那么我们就会提出这样的问题:当连续函数满足何种条件时,是区间上的凸函数;当凸函数满足何种条件时,是区间上的连续函数;连续凸函数在区间上具有何种性质?宋
8、方[6]提出,如果连续函数为凸函数,必定满足以下定义:对任意的及,恒有:。2.2.2凸函数的微积分性质刘鸿基,张志宏[8]指出凸函数是一类重要的函数,有着较好的分析性质,而关于凸函数,一般教材大都从几何意义方面引出定义,