初三数学 二次函数的大题

初三数学 二次函数的大题

ID:46640456

大小:595.96 KB

页数:5页

时间:2019-11-26

初三数学 二次函数的大题_第1页
初三数学 二次函数的大题_第2页
初三数学 二次函数的大题_第3页
初三数学 二次函数的大题_第4页
初三数学 二次函数的大题_第5页
资源描述:

《初三数学 二次函数的大题》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、二次函数与四边形一.二次函数与四边形的形状A例1.(浙江义乌市)如图,抛物线与x轴交A、B两点(A点在B点左侧),直线与抛物线交于A、C两点,其中C点的横坐标为2.(1)求A、B两点的坐标及直线AC的函数表达式;(2)P是线段AC上的一个动点,过P点作y轴的平  行线交抛物线于E点,求线段PE长度的最大值;(3)点G是抛物线上的动点,在x轴上是否存在点F,使A、C、F、G这样的四个点为顶点的四边形是平行四边形?如果存在,求出所有满足条件的F点坐标;如果不存在,请说明理由.例1.解:(1)令y=0,解得或∴A(-1,0)B(3,0);

2、将C点的横坐标x=2代入得y=-3,∴C(2,-3)∴直线AC的函数解析式是y=-x-1(2)设P点的横坐标为x(-1≤x≤2)则P、E的坐标分别为:P(x,-x-1),E(∵P点在E点的上方,PE=∴当时,PE的最大值=(3)存在4个这样的点F,分别是B(0,4)A(6,0)EFO练习1.(河南省实验区)23.如图,对称轴为直线的抛物线经过点A(6,0)和B(0,4).(1)求抛物线解析式及顶点坐标;(2)设点E(,)是抛物线上一动点,且位于第四象限,四边形OEAF是以OA为对角线的平行四边形.求平行四边形OEAF的面积S与之间的

3、函数关系式,并写出自变量的取值范围;①当平行四边形OEAF的面积为24时,请判断平行四边形OEAF是否为菱形?②是否存在点E,使平行四边形OEAF为正方形?若存在,求出点E的坐标;若不存在,请说明理由.B(0,4)A(6,0)EFO练习1.解:(1)由抛物线的对称轴是,可设解析式为.把A、B两点坐标代入上式,得解之,得故抛物线解析式为,顶点为(2)∵点在抛物线上,位于第四象限,且坐标适合,∴y<0,即-y>0,-y表示点E到OA的距离.∵OA是的对角线,∴.因为抛物线与轴的两个交点是(1,0)的(6,0),所以,自变量的取值范围是1

4、<<6.①根据题意,当S=24时,即.化简,得解之,得故所求的点E有两个,分别为E1(3,-4),E2(4,-4).点E1(3,-4)满足OE=AE,所以是菱形;点E2(4,-4)不满足OE=AE,所以不是菱形.②当OA⊥EF,且OA=EF时,是正方形,此时点E的坐标只能是(3,-3).而坐标为(3,-3)的点不在抛物线上,故不存在这样的点E,使为正方形练习2.(四川省德阳市)25.如图,已知与轴交于点和的抛物线的顶点为,抛物线与关于轴对称,顶点为.1234554321(1)求抛物线的函数关系式;(2)已知原点,定点,上的点与上的点

5、始终关于轴对称,则当点运动到何处时,以点为顶点的四边形是平行四边形?(3)在上是否存在点,使是以为斜边且一个角为的直角三角形?若存,求出点的坐标;若不存在,说明理由.练习2.解:(1)由题意知点的坐标为.设的函数关系式为.又点在抛物线上,,解得.抛物线的函数关系式为(或).(2)与始终关于轴对称,与轴平行.设点的横坐标为,则其纵坐标为,,,即.当时,解得.当时,解得.当点运动到或或或时,,以点为顶点的四边形是平行四边形.(3)满足条件的点不存在.理由如下:若存在满足条件的点在上,则123554321,(或),.过点作于点,可得.,,

6、.点的坐标为.但是,当时,.不存在这样的点构成满足条件的直角三角形.练习3.(山西卷)如图,已知抛物线与坐标轴的交点依次是,,.(1)求抛物线关于原点对称的抛物线的解析式;(2)设抛物线的顶点为,抛物线与轴分别交于两点(点在点的左侧),顶点为,四边形的面积为.若点,点同时以每秒1个单位的速度沿水平方向分别向右、向左运动;与此同时,点,点同时以每秒2个单位的速度沿坚直方向分别向下、向上运动,直到点与点重合为止.求出四边形的面积与运动时间之间的关系式,并写出自变量的取值范围;(3)当为何值时,四边形的面积有最大值,并求出此最大值;(4)

7、在运动过程中,四边形能否形成矩形?若能,求出此时的值;若不能,请说明理由.练习3.[解](1)点,点,点关于原点的对称点分别为,,.设抛物线的解析式是,则解得所以所求抛物线的解析式是.(2)由(1)可计算得点.过点作,垂足为.当运动到时刻时,,.根据中心对称的性质,所以四边形是平行四边形.所以.所以,四边形的面积.因为运动至点与点重合为止,据题意可知.所以,所求关系式是,的取值范围是.(3),().所以时,有最大值.提示:也可用顶点坐标公式来求.(4)在运动过程中四边形能形成矩形.由(2)知四边形是平行四边形,对角线是,所以当时四边

8、形是矩形.所以.所以.所以.解之得(舍).所以在运动过程中四边形可以形成矩形,此时.[点评]本题以二次函数为背景,结合动态问题、存在性问题、最值问题,是一道较传统的压轴题,能力要求较高。

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。