信号与系统 西安邮电 习题答案

信号与系统 西安邮电 习题答案

ID:46637858

大小:4.60 MB

页数:114页

时间:2019-11-26

信号与系统 西安邮电 习题答案_第1页
信号与系统 西安邮电 习题答案_第2页
信号与系统 西安邮电 习题答案_第3页
信号与系统 西安邮电 习题答案_第4页
信号与系统 西安邮电 习题答案_第5页
资源描述:

《信号与系统 西安邮电 习题答案》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、第一次1.1画出下列各个信号的波形[式中为斜升函数]知识要点:本题主要考查阶跃函数和单位阶跃序列的性质,包括和的波形特性以及它们与普通函数结合时的波形变化特性。解题方法:首先考虑各信号中普通函数的波形特点,再考虑与或结合时的变化情况;若只是普通信号与阶跃信号相乘,则可利用或的性质直接画出或部分的普通函数的波形;若是普通函数与阶跃信号组合成的复合信号,则需要考虑普通函数值域及其对应的区间。(1)解:正弦信号周期(2)解:,正弦信号周期(3)解:,正弦信号周期(4)(5)1.2画出下列各信号的波形[式中为斜升函

2、数]知识要点:本题主要考查阶跃函数和单位阶跃序列的性质,包括和的波形特性以及它们与普通函数结合时的波形变化特性。解题方法:首先考虑各信号中普通函数的波形特点,再考虑与或结合时的变化情况;若只是普通信号与阶跃信号相乘,则可利用或的性质直接画出或部分的普通函数的波形;若是普通函数与阶跃信号组合成的复合信号,则需要考虑普通函数值域及其对应的区间。(1)(2)(2)解:(4)(5)1.3写出下图所示各波形的表达式(1)解:(2)解:1.4写出下图所示各序列的闭合形式的表示式(a)解:(b)解:(课堂已讲)1.5判别

3、下列各序列是否为周期性的,如果是,确定其周期(1)解:周期序列(2)解:,,m取3,;,,;故(3)解:,,故非周期;,,;故非周期1.6已知信号的波形如下图所示,画出下列各函数的波形(1)(2)(3)1.7已知序列的图形如图所示,画出下列各序列的图形(1)(2)1.8信号的波形图如下所示,试画出和的波形解:由图可知:,则当时,;当时,当时,(课堂已讲)1.9已知信号的波形如图所示,分别画出和的波形解:第二次1.10计算下列各题,(1)解:(2)解:(3)解:(4)解:(5)解:(6)解:(7)解:(8)解

4、:(课堂已讲)1.11设系统的初始状态为,激励为,各系统的全响应与激励和初始状态的关系如下,试分析各系统是否是线性的。根据线性系统的定义,依次判断系统是否具有分解特性、零输入线性、零状态线性。(1)解:满足可分解性线性线性(2)解:满足可分解性线性非线性系统非线性(课堂已讲)1.12下列微分或差分方程所描述的系统,是线性的还是非线性的?是时变的还是不变的?(1)解:常系数、线性、微分方程故为,线性时不变系统(2)解:变系数、线性、差分方程故为,线性时变系统1.13设激励为,下列等式是各系统的零状态响应,判断

5、各系统是否是线性的、时不变的、因果的、稳定的?(1)解:,,,非线性,时不变当,有,则,非因果若,则,稳定(2)解:,线性若延迟输入为,则系统输出为,时变若,有若,则,非因果若,则,稳定。(3)解:非线性,时不变若,有,,因果若,则,稳定。(4)解:,,非线性,时变若,有,则,,且,非因果若,则,稳定1.14已知某LTI系统在相同初始条件下,当激励为时,系统的完全响应为,当激励为时,该系统的完全响应为。试用时域分析法求初始条件变为原来的两倍而激励为时该系统的完全响应。知识要点:本题主要考查LTI连续系统的齐

6、次性和可加性以及可分解特性。解题方法:利用零输入响应的齐次性和可加性,零状态响应的齐次性和可加性以及系统的可分解特性求解。解:,1.15某一阶LTI离散系统,其初始状态为,已知当激励为时,其全响应为;若初始状态不变,当激励为时,其全响应为;若初始状态为,当激励为时,求其全响应。解:第三次2.1已知描述连续系统的微分方程和初始状态为,,,试求其零输入响应。解:求出齐次方程的齐次解,代入初始状态求解方程的特征方程为,特征根为,,微分方程的齐次解为又激励为0,,即,2.2已知描述系统的微分方程和初始状态如下,试求

7、其值和。解:利用微分方程两端各奇异函数项的系数相平衡的方法,判断是否发生跃变,并从积分,求得时刻的初始值(1),,,解:当时,方程右端不含有冲激项,则及其各阶导数不发生跃变,则(2)解:当时,代入方程得令,中不含及其各阶导(2),,不含及其各阶导(1),,不含及其各阶导所以,,代入(1)式中,并从积分:,所以,故代入(2)式中,并从积分:所以,故注意:其中,,。2.3描述系统的方程为,求其冲激响应和阶跃响应。知识要点:本题主要考利用方程两端奇异函数系数相平衡的方法来判断是否发生跃变;。解题方法:选取新变量,

8、使满足方程,设其冲激响应为;系统的冲激响应为,在带入公式,求出阶跃响应式。解法1:选新变量,则当时,,,特征方程为:,,,,,,。解法2:当时,系统的零状态响应,设,从积分(1)(2),,,不含及其各阶导数,则,,对(1)从积分,,,对(2)从积分,,,当时,,,,,,,2.4信号和的波形如下图所示,设,求。解:(上课已讲)2.5各函数波形如图所示,图(a)、(b)、(c)、(d)中均为单位冲激函数,试求下列卷积

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。