机械能守恒定律及其应用典型例题

机械能守恒定律及其应用典型例题

ID:46224620

大小:80.42 KB

页数:11页

时间:2019-11-21

机械能守恒定律及其应用典型例题_第1页
机械能守恒定律及其应用典型例题_第2页
机械能守恒定律及其应用典型例题_第3页
机械能守恒定律及其应用典型例题_第4页
机械能守恒定律及其应用典型例题_第5页
资源描述:

《机械能守恒定律及其应用典型例题》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、机械能守恒定律及其应用·典型例题精析链,则当铁链刚挂直时速度多大?[思路点拨] 以铁链和地球组成的系统为对象,铁链仅受两个力:重力G和光滑水平桌面的支持力N,在铁链运动过程中,N与运动速度v垂直,N不做功,只有重力G做功,因此系统机械能守恒.铁链释放前只有重力势能,但由于平放在桌面上与悬吊着两部分位置不同,计算重力势能时要分段计算.选铁链挂直时的下端点为重力势能的零标准,应用机械能守恒定律即可求解.[解题过程] 初始状态:平放在桌面上的部分铁链具有的重力势能mv2,又有重力势能根据机械能守恒定律有E1=E2.所以Ep1+Ep2=Ek2+Ep2,故[小结] (1)应用机械能守恒

2、定律解题的基本步骤由本题可见一斑.①根据题意,选取研究对象.②明确研究对象在运动过程中受力情况,并弄清各力做功情况,分析是否满足机械能守恒条件.③恰当地选取重力势能的零势能参考平面,确定研究对象在过程的始、末状态机械能转化情况.④应用机械能守恒定律列方程、求解.(2)本题也可从线性变力求平均力做功的角度,应用动能定理求解,也可应用F-h图线(示功图)揭示的功能关系求解,请同学们尽可发挥练习.[例题2] 如图8-54所示,长l的细绳一端系质量m的小球,另一端固定于O点,细绳所能承受拉力的最大值是7mg.现将小球拉至水平并由静止释放,又知图中O′点有一小钉,为使小球可绕O′点做竖

3、直面内的圆周运动.试求OO′的长度d与θ角的关系(设绳与小钉O′相互作用中无能量损失).[思路点拨] 本题所涉及问题层面较多.除涉及机械能守恒定律之外,还涉及圆周运动向心力公式.另外还应特别注意两个临界条件:①要保证小球能绕O′完成圆周运动,圆周半径就不得太长,即OO′不得太短;②还必须保证细绳不会被拉断,故圆周半径又不能太短,也就是OO′不能太长.本题的研究中应以两个特殊点即最高点D和最低点C入手,依上述两临界条件,按机械能守恒和圆运动向心力公式列方程求解.[解题过程] 设小球能绕O′点完成圆周运动,如图8-54所示.其最高点为D,最低点为C.对于D点,依向心力公式有(1)

4、其中vD为D点速度,vD可由机械能守恒定律求知,取O点为重力势能的零势能位置,则(2)将(1)式与(2)式联立,解之可得另依题意细绳上能承受的最大拉力不能超过7mg,由于在最低点C,绳所受拉力最大,故应以C点为研究对象,并有(3)其中vC是C点速度,vC可由机械能守恒定律求知(4)将(3)式与(4)式联立,解之可得[小结] (1)本题中小球在圆运动中,由于绳的拉力与运动方向相互垂直不会做功,只有重力做功,故机械能守恒.求解竖直面内的圆周运动问题是机械能守恒定律的重要应用之一,并由此可以推导出些有价值的结论.例如:从光滑斜面滑下的小球,进入竖直光滑的圆环(半径为R),在细绳作用

5、下在竖直面内做圆周运动,在最低点和最高点,绳上拉力的差,应等于6mg,等等.(2)从本题的结论入手,我们还可以对本题进行挖掘,请考虑如果我们改变一下绳上所承受拉力的最大值,原题是否还一定有解呢?答案应是否定的.当Tm=6mg时,O′点的位置将不再是范围,而是一个定点;当Tm=5mg时,本题将根本无解.[例题3] 如图8-55所示,半径为r,质量不计的圆盘盘面与地面垂直,圆心处有一个垂直盘面的光滑水平定轴O,在盘的右边缘固定的小球B,放开盘让其自由转动.问:(1)当A转到最低点时,两小球的重力势能之和减少了多少?(2)A球转到最低点时的线速度是多少?(3)在转动过程中半径OA向

6、左偏离竖直方向的最大角度是多少?[思路点拨] 两小球重力势能之和的减少,可选取任意参考平面为零势能参考平面进行计算.由于圆盘转动过程中,只有两小球重力做功,根据机械能守恒定律可列式算出A球的线速度和半径OA的最大偏角.[解题过程] (1)以通过转轴O的水平面为零势能面,开始时两球重力势能之和为当A球转至最低点时两球重力势能之和为Ep2=EpA+EpB=-mgr+0=-mgr,故两球重力势能之和减少了(2)由于圆盘转动过程中,只有两球重力做功,机械能守恒,因此两球重力势能之和的减少一定等于两球动能的增加,设A球转至最低点,A、B两球的线速度分别为vA,vB,则因A、B两球固定在

7、同一圆盘上,转动过程中的角速度ω相同.由(3)设半径OA向左偏离竖直线的最大角度为θ,如图8-56,该位置系统的机械能与开始时的机械能分别为由系统机械能守恒定律E1=E3,即两边平方得     4(1-sin2θ)=1+sin2θ+2sinθ,所以           5sin2θ+2sinθ-3=0,[小结] 系统的始态、末态的重力势能,因参考平面的选取会有所不同,但是重力势能的变化却是绝对的,不会因参考平面的选取而异.机械能守恒的表达方式可以记为Ek1+Ep1=Ek2+Ep2,也可以写作:ΔEk增=

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。