欢迎来到天天文库
浏览记录
ID:46158707
大小:2.94 MB
页数:13页
时间:2019-11-21
《 河南省南阳市2018届高三上学期期末考试数学(文)试题(解析版)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2017年秋期高中三年级期终质量评估数学试题(文)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,则()A.B.C.D.【答案】A【解析】【详解】或,,,故选A.2.已知(为虚数单位),则复数()A.B.C.D.【答案】C【解析】,,,,故选C.3.已知双曲线的一条渐近线的方程是:,且该双曲线经过点,则双曲线的方程是()A.B.C.D.【答案】D【解析】由题可设双曲线的方程为:,将点代入,可得,整理即可得双曲线的方程为.故选D.4
2、.设,则()A.B.C.D.【答案】B【解析】因为,,故选B.5.从甲、乙等5名学生中随机选出2人,则甲被选中的概率为()A.B.C.D.【答案】B【解析】试题分析:从甲乙等名学生中随机选出人,基本事件的总数为,甲被选中包含的基本事件的个数,所以甲被选中的概率,故选B.考点:古典概型及其概率的计算.6.已知实数满足,则目标函数()A.,B.,C.,无最小值D.,无最小值【答案】C【解析】画出约束条件表示的可行域,如图所示的开发区域,变形为,平移直线,由图知,到直线经过时,因为可行域是开发区域,所以无最小值,无最小值,故选
3、C.【方法点晴】本题主要考查线性规划中,利用可行域求目标函数的最值,属于简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.7.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的外接球的表面积()A.B.C.D.【答案】C【解析】由三视图可知,该几何体为如图所示的四棱锥,图中正方体的棱长为,该多面体
4、如图所示,外接球的半径为为,外接圆的半径,由可得,,故该多面体的外接球的表面积,故选C.8.运行如图所示的程序框图,则输出结果为()A.2017B.2016C.1009D.1008【答案】D【解析】输出结果为,选D.点睛:算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.9.为得到的图象,只需要将的图象()A.向右平移个单位B.向右平移个单位C.向左平移
5、个单位D.向左平移个单位【答案】D【解析】试题分析:因为,所以为得到的图象,只需要将的图象向左平移个单位;故选D.考点:1.诱导公式;2.三角函数的图像变换.10.函数的大致图象为()A.B.C.D.【答案】C【解析】当时,,由,得,由,得,在上递增,在上递减,,即时,,只有选项C符合题意,故选C.11.设数列的通项公式,若数列的前项积为,则使成立的最小正整数为()A.9B.10C.11D.12【答案】C【解析】因为,所以,该数列的前项积为,使成立的最小正整数为,故选C.12.抛物线的焦点为,过且倾斜角为60°的直线为,
6、,若抛物线上存在一点,使关于直线对称,则()A.2B.3C.4D.5【答案】A【解析】关于过倾斜角为的直线对称,,由抛物线定义知,等于点到准线的距离,即,由于,,,代入抛物线方程可得,,解得,故选A.【方法点睛】本题主要考查抛物线的定义和几何性质,以及点关于直线对称问题,属于难题.与焦点、准线有关的问题一般情况下都与拋物线的定义有关,解决这类问题一定要注意点到点的距离与点到直线的距离的转化:(1)将抛线上的点到准线距离转化为该点到焦点的距离;(2)将抛物线上的点到焦点的距离转化为到准线的距离,使问题得到解决.第Ⅱ卷(共9
7、0分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.曲线在点处的切线方程为__________.【答案】【解析】,切线的斜率,又过所求切线方程为,即,故答案为.【方法点晴】本题主要考查利用导数求曲线切线方程,属于简单题.求曲线切线方程的一般步骤是:(1)求出在处的导数,即在点出的切线斜率(当曲线在处的切线与轴平行时,在处导数不存在,切线方程为);(2)由点斜式求得切线方程.14.已知点,,,若,则实数的值为_______.【答案】【解析】点,,,,又,,两边平方得,解得,经检验是原方程的解,实数的值为,故答
8、案为.15.已知的三边长分别为3,5,7,则该三角形的外接圆半径等于_________.【答案】【解析】试题分析:,由正弦定理得.考点:解三角形,三角形外接圆.16.若不等式对任意正数恒成立,则实数的取值范围为_____.【答案】【解析】不等式对任意正数恒成立,,,当且仅当时取等号,,实数的取值范围为,故答案为.三、
此文档下载收益归作者所有