欢迎来到天天文库
浏览记录
ID:45835438
大小:2.41 MB
页数:17页
时间:2019-11-18
《北京市清华附中2017-2018学年第一学期高一期末数学试题(含答案解析)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、北京市清华附中2017-2018学年第一学期高一期末数学试题一、选择题(本大题共8小题,共40.0分)1.下列各角中,与50°的角终边相同的角是( )A.B.C.D.【答案】D【解析】【分析】写出与50°的角终边相同的角的集合,取k=﹣1得答案.【详解】与50°的角终边相同的角的集合为{α
2、α=50°+k•360°,k∈Z}.取k=﹣1,可得α=﹣310°.∴与50°的角终边相同的角是﹣310°.故选:D.【点睛】本题考查终边相同角的概念,是基础题.2.设向量,则的夹角等于()A.B.C.D.【答案】A【解析】试题分析:∵
3、,∴,∴的夹角等于,故选A考点:本题考查了数量积的坐标运算点评:熟练运用数量积的概念及坐标运算求解夹角问题是解决此类问题的关键,属基础题3.已知角α的终边经过点P(4,-3),则的值为( )A.B.C.D.【答案】C【解析】【分析】利用任意角函数的定义求出cosα,利用三角函数的诱导公式化简求出值.【详解】∵角α的终边经过点P(4,﹣3),∴p到原点的距离为5∴sinα,cosα∴故选:C.【点睛】本题考查三角函数的定义,考查诱导公式,属于基础题.4.为了得到函数y=cos(2x-)的图象,只需将函数y=cos2x的图象(
4、 )A.向左平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向右平移个单位长度【答案】B【解析】【分析】由条件利用函数y=Asin(ωx+φ)的图象变换规律可得结论.【详解】函数cos2(x),故把函数y=cos2x的图象向右平移个单位长度,可得函数的图象,故选:B.【点睛】本题主要考查函数y=Asin(ωx+φ)的图象变换规律,属于中档题.5.已知非零向量与满足=且,则△ABC为( )A.三边均不相等的三角形B.直角三角形C.等腰非等边三角形D.等边三角形【答案】D【解析】【分析】根据得出B=C,得出A,
5、由此判断△ABC是等边三角形.【详解】△ABC中,,∴,∴cos,cos,,∴B=C,△ABC是等腰三角形;又,∴1×1×cosA,∴cosA,A,∴△ABC是等边三角形.故选:D.【点睛】本题考查了平面向量的数量积运算问题,也考查了三角形形状的判断问题,是基础题.6.同时具有性质“①最小正周期为π;②图象关于直线x=对称;③在[,]上是增函数”的一个函数是( )A.B.C.D.【答案】C【解析】【分析】根据三角函数的图象与性质,判断满足条件的函数即可.【详解】“①最小正周期是π,可得ω=2,排除选项A;②图象关于直线x对
6、称,可得:2,cos,排除选项B,2,cos,排除选项D;对于C,函数y=sin(2x),最小正周期为π,且2,sin1,函数图象关于x对称;x∈[,]时,2x∈[,],∴y=sin(2x)是单调增函数,C满足条件.故选:C.【点睛】函数的性质(1).(2)周期(3)由求对称轴(4)由求增区间;由求减区间.7.定义在R上的偶函数f(x)满足f(x+2)=f(x),且在[1,2]上是减函数,若α,β是锐角三角形的两个内角,则( )A.f B.f C.f D.f 【答案】A【解析】【分析】根据题意,分析可得f
7、(﹣x)=f(x+2),即函数f(x)的图象关于直线x=1对称,据此分析可得f(x)在区间[0,1]上是增函数,由α,β是锐角三角形的两个内角便可得出sinα>cosβ,从而根据f(x)在(0,1)上是增函数即可得出f(sinα)>f(cosβ),即可得答案.【详解】根据题意,定义在R上的偶函数f(x)满足f(x+2)=f(x),则有f(﹣x)=f(x+2),即函数f(x)的图象关于直线x=1对称,又由函数f(x)在[1,2]上是减函数,则其在[0,1]上是增函数,若α,β是锐角三角形的两个内角,则α+β,则有αβ,则有si
8、nα>sin(β)=cosβ,又由函数f(x)在[0,1]上是增函数,则f(sinα)>f(cosβ);故选:A.【点睛】本题考查函数的奇偶性、周期性与周期性的综合应用,注意分析函数在(0,1)上的单调性.8.若定义[-2018,2018]上的函数f(x)满足:对任意x1,x2∈[-2018,2018]有f(x1+x2)=f(x1)+f(x2)-2017,且当x>0时,有f(x)>2017,设f(x)的最大值、最小值分别为M,m,则M+m的值为( )A.0B.2018C.4034D.4036【答案】C【解析】【分析】计算f
9、(0)=2017,构造函数g(x)=f(x)﹣2017,判断g(x)的奇偶性得出结论.【详解】令x1=x2=0得f(0)=2f(0)﹣2017,∴f(0)=2017,令x1=﹣x2得f(0)=f(﹣x2)+f(x2)﹣2017=2017,∴f(﹣x2)+f(x2)=4034,令g(x)=f
此文档下载收益归作者所有