2019-2020年高三数学模拟试卷(24)(含解析)新人教A版

2019-2020年高三数学模拟试卷(24)(含解析)新人教A版

ID:45156244

大小:81.50 KB

页数:9页

时间:2019-11-10

2019-2020年高三数学模拟试卷(24)(含解析)新人教A版_第1页
2019-2020年高三数学模拟试卷(24)(含解析)新人教A版_第2页
2019-2020年高三数学模拟试卷(24)(含解析)新人教A版_第3页
2019-2020年高三数学模拟试卷(24)(含解析)新人教A版_第4页
2019-2020年高三数学模拟试卷(24)(含解析)新人教A版_第5页
资源描述:

《2019-2020年高三数学模拟试卷(24)(含解析)新人教A版》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、2019-2020年高三数学模拟试卷(24)(含解析)新人教A版一、填空题(共14小题,每小题3分,满分42分)1.与=(1,2)共线的单位向量为__________.2.设奇函数f(x)在(0,+∞)上为增函数,且f(1)=0,则不等式的解集是__________.3.已知﹣1<x+y<4且2<x﹣y<3,则z=2x﹣3y的取值范围是__________.(答案用区间表示)4.设α∈(π,2π),若,则的值为__________.5.已知函数f(x)=在R不是单调函数,则实数a的取值范围是__________6.已知等比数列{an}满足an>0,

2、n=1,2,…,且a5•a2n﹣5=22n(n≥3),则当n≥1时,log2a1+log2a3+…+log2a2n﹣1=__________.7.已知两个等差数列{an}、{bn}的前n项和分别为An和Bn,若,则使为整数的正整数的个数是__________.8.已知=(λ,2λ),=(3λ,2),如果与的夹角为锐角,则λ的取值范围是__________.9.在等比数列{an}中,若a1=,a4=﹣4,则

3、a1

4、+

5、a2

6、+…+

7、a6

8、=__________.10.在△ABC所在的平面上有一点P,满足++=,则=__________.11.如图,已

9、知C为△OAB边AB上一点,且=2,=m+n(m,n∈R),则mn=__________.12.等比数列{an}中,a1=2,a8=4,函数f(x)=x(x﹣a1)(x﹣a2)…(x﹣a8),则f′(0)=__________.13.设正实数x,y,z满足x+2y+z=1,则的最小值为__________.14.定义在R上的函数y=f(x)是增函数,且函数y=f(x﹣2)的图象关于(2,0)成中心对称,设s,t满足不等式f(s2﹣4s)≥﹣f(4t﹣t2),若﹣2≤s≤2时,则3t+s的范围是__________.二、解答题(共2小题,满分0分)1

10、5.已知△ABC中,,记.(1)求f(x)解析式及定义域;(2)设g(x)=6m•f(x)+1,,是否存在正实数m,使函数g(x)的值域为?若存在,请求出m的值;若不存在,请说明理由.16.设数列{an}是首项为4,公差为1的等差数列;Sn为数列{bn}的前n项和,且Sn=n2+2n.(1)求{an}及{bn}的通项公式an和bn;(2)f(n)=问是否存在k∈N+使f(k+27)=4f(k)成立?若存在,求出k的值;若不存在,说明理由;(3)若对任意的正整数n,不等式﹣≤0恒成立,求正数a的取值范围.江苏省苏州市张家港市梁丰高级中学xx届高考数学

11、模拟试卷(24)一、填空题(共14小题,每小题3分,满分42分)1.与=(1,2)共线的单位向量为±(,).考点:单位向量.专题:平面向量及应用.分析:利用单位向量的定义写出与共线的单位向量±并化简.解答:解:与=(1,2)共线的单位向量为±=±=±=±(,).故答案为:±(,).点评:本题考查了单位向量的概念与应用的问题,解题时应根据平面向量的线性运算法则进行化简.2.设奇函数f(x)在(0,+∞)上为增函数,且f(1)=0,则不等式的解集是(﹣1,0)∪(0,1).考点:其他不等式的解法.专题:计算题;作图题;数形结合.分析:由函数f(x)是奇

12、函数,将原等式转化为f(x)x<0,反映在图象上,即自变量与函数值异号,然后根据条件作出一函数图象,由数形结合法求解.解答:解:∵函数f(x)是奇函数∴f(﹣x)=﹣f(x)∴不等式可转化为:f(x)x<0根据条件可作一函数图象:∴不等式的解集是(﹣1,0)∪(0,1)故答案为:(﹣1,0)∪(0,1)点评:本题主要考查函数的奇偶性转化不等式及数形结合法解不等式问题.3.已知﹣1<x+y<4且2<x﹣y<3,则z=2x﹣3y的取值范围是(3,8).(答案用区间表示)考点:简单线性规划的应用.专题:计算题;压轴题;数形结合.分析:本题考查的知识点是线

13、性规划,处理的思路为:根据已知的约束条件画出满足约束条件的可行域,再用角点法,求出目标函数的最大值和最小值,再根据最值给出目标函数的取值范围.解答:解:画出不等式组表示的可行域如下图示:在可行域内平移直线z=2x﹣3y,当直线经过x﹣y=2与x+y=4的交点A(3,1)时,目标函数有最小值z=2×3﹣3×1=3;当直线经过x+y=﹣1与x﹣y=3的交点B(1,﹣2)时,目标函数有最大值z=2×1+3×2=8.z=2x﹣3y的取值范围是(3,8).故答案为:(3,8).点评:用图解法解决线性规划问题时,分析题目的已知条件,找出约束条件和目标函数是关键

14、,可先将题目中的量分类、列出表格,理清头绪,然后列出不等式组(方程组)寻求约束条件,并就题目所述找出目标函数.然后将可行域

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。