欢迎来到天天文库
浏览记录
ID:44939314
大小:226.69 KB
页数:7页
时间:2019-11-05
《2019_2020学年高中数学课时跟踪检测(十二)合情推理(含解析)新人教A版》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、课时跟踪检测(十二)合情推理一、题组对点训练对点练一 数(式)中的归纳推理1.已知数列{an}的前n项和Sn=n2·an(n≥2),且a1=1,通过计算a2,a3,a4,猜想an等于( )A.B.C.D.解析:选B 由a1=1,S2=22·a2=a1+a2得a2=,由a1+a2+a3=9×a3得a3=,由a1+a2+a3+a4=42·a4得a4=,…,猜想an=,故选B.2.将正整数排列如下图:12 3 4 5 6 7 8 910 11 12 13 14 15 16…则2018出现在A.第44行第8
2、1列B.第45行第81列C.第44行第82列D.第45行第82列解析:选D 由题意可知第n行有2n-1个数,则前n行的数的个数为1+3+5+…+(2n-1)=n2,因为442=1936,452=2025,且1936<2018<2025,所以2018在第45行,又第45行有2×45-1=89个数,2018-1936=82,故2018在第45行第82列,选D.3.观察下列各式:1=12,2+3+4=32,3+4+5+6+7=52,4+5+6+7+8+9+10=72,…可以得出的一般结论是( )A.n+(
3、n+1)+(n+2)+…+(3n-2)=n2B.n+(n+1)+(n+2)+…+(3n-2)=(2n-1)2C.n+(n+1)+(n+2)+…+(3n-1)=n2D.n+(n+1)+(n+2)+…+(3n-1)=(2n-1)2解析:选B 观察各等式的构成规律可以发现,各等式的左边是2n-1(n∈N*)项的和,其首项为n,右边是项数的平方,故第n个等式首项为n,共有2n-1项,右边是(2n-1)2,即n+(n+1)+(n+2)+…+(3n-2)=(2n-1)2,故选B.4.设f(x)=,先分别求f(0)
4、+f(1),f(-1)+f(2),f(-2)+f(3),然后归纳出一个一般结论,并给出证明.解:f(0)+f(1)=+=+=+=.同理f(-1)+f(2)=,f(-2)+f(3)=.由此猜想:当x1+x2=1时,f(x1)+f(x2)=.证明:设x1+x2=1,则f(x1)+f(x2)=+====.故猜想成立.对点练二 归纳推理在几何中的应用5.如图为一串白黑相间排列的珠子,按这种规律往下排起来,那么第36颗珠子应是什么颜色( )A.白色B.黑色C.白色可能性大D.黑色可能性大解析:选A 由图,知三
5、白二黑周期性排列,36=5×7+1,故第36颗珠子的颜色为白色.6.如图所示,第n个图形是由正n+2边形拓展而来(n=1,2,…),则第n-2个图形共有________个顶点.解析:第一个图有3+3×3=4×3个顶点;第二个图有4+4×4=5×4个顶点;第三个图有5+5×5=6×5个顶点;第四个图有6+6×6=7×6个顶点;……;第n个图有(n+3)×(n+2)个顶点.第n-2个图有(n+1)×n=(n2+n)个顶点.答案:n2+n7.某少数民族的刺绣有着悠久的历史,如图(1),(2),(3),(4)
6、为最简单的四个图案,这些图案都是由小正方形构成,小正方形数越多刺绣越漂亮.现按同样的规律刺绣(小正方形的摆放规律相同),设第n个图形包含f(n)个小正方形.(1)求出f(5)的值;(2)利用合情推理的“归纳推理思想”,归纳出f(n+1)与f(n)之间的关系式,并根据你得到的关系式求出f(n)的表达式;(3)求+++…+的值.解:(1)f(5)=41.(2)因为f(2)-f(1)=4=4×1,f(3)-f(2)=8=4×2,f(4)-f(3)=12=4×3,f(5)-f(4)=16=4×4,…由上面规律
7、,得出f(n+1)-f(n)=4n.因为f(n+1)-f(n)=4n⇒f(n+1)=f(n)+4n⇒f(n)=f(n-1)+4(n-1)=f(n-2)+4(n-1)+4(n-2)=f(n-3)+4(n-1)+4(n-2)+4(n-3)=…=f(1)+4(n-1)+4(n-2)+4(n-3)+…+4=2n2-2n+1.(3)当n≥2时,==.所以+++…+=1+×=1+=-.对点练三 类比推理8.已知{bn}为等比数列,b5=2,且b1b2b3…b9=29.若{an}为等差数列,a5=2,则{an}的类
8、似结论为( )A.a1a2a3…a9=29B.a1+a2+…+a9=29C.a1a2…a9=2×9D.a1+a2+…+a9=2×9解析:选D 等比数列中的积(乘方)类比等差数列中的和(积),得a1+a2+…+a9=2×9.9.在平面中,△ABC的∠ACB的平分线CE分△ABC面积所成的比=,将这个结论类比到空间:在三棱锥ABCD中,平面DEC平分二面角ACDB且与AB交于E,则类比的结论为________.解析:平面中的面积类比到空间为体积,故类比成.
此文档下载收益归作者所有