欢迎来到天天文库
浏览记录
ID:39751270
大小:116.39 KB
页数:7页
时间:2019-07-10
《2017_2018学年高中数学课时跟踪检测(三)合情推理(含解析)新人教a版》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、课时跟踪检测(三)合情推理层级一 学业水平达标1.观察图形规律,在其右下角的空格内画上合适的图形为( )A. B.△C.D.○解析:选A 观察可发现规律:①每行、每列中,方、圆、三角三种形状均各出现一次,②每行、每列有两阴影一空白,即得结果.2.下面几种推理是合情推理的是( )①由圆的性质类比出球的有关性质;②由直角三角形、等腰三角形、等边三角形的内角和是180°,归纳出所有三角形的内角和都是180°;③教室内有一把椅子坏了,则猜想该教室内的所有椅子都坏了;④三角形内角和是180°,四边形内角
2、和是360°,五边形内角和是540°,由此得出凸n边形的内角和是(n-2)·180°(n∈N*,且n≥3).A.①②B.①③④C.①②④D.②④解析:选C ①是类比推理;②④是归纳推理,∴①②④都是合情推理.3.在平面上,若两个正三角形的边长的比为1∶2,则它们的面积比为1∶4,类似地,在空间内,若两个正四面体的棱长的比为1∶2,则它们的体积比为( )A.1∶2B.1∶4C.1∶8D.1∶16解析:选C 由平面和空间的知识,可知面积之比与边长之比成平方关系,在空间中体积之比与棱长之比成立方关系,故若两个正四面
3、体的棱长的比为1∶2,则它们的体积之比为1∶8.4.类比平面内“垂直于同一条直线的两条直线互相平行”的性质,可推出下列空间结论:①垂直于同一条直线的两条直线互相平行;②垂直于同一个平面的两条直线互相平行;③垂直于同一条直线的两个平面互相平行;④垂直于同一平面的两个平面互相平行,则其中正确的结论是( )A.①②B.②③C.③④D.①④解析:选B 根据立体几何中线面之间的位置关系及有关定理知,②③是正确的结论.5.观察下列各等式:+=2,+=2,+=2,+=2,依照以上各式成立的规律,得到一般性的等式为( )A
4、.+=2B.+=2C.+=2D.+=2解析:选A 观察发现:每个等式的右边均为2,左边是两个分数相加,分子之和等于8,分母中被减数与分子相同,减数都是4,因此只有A正确.6.观察下列等式1=12+3+4=93+4+5+6+7=254+5+6+7+8+9+10=49照此规律,第n个等式为________.解析:观察所给等式,等式左边第一个加数与行数相同,加数的个数为2n-1,故第n行等式左边的数依次是n,n+1,n+2,…,(3n-2);每一个等式右边的数为等式左边加数个数的平方,从而第n个等式为n+(n+1)+
5、(n+2)+…+(3n-2)=(2n-1)2.答案:n+(n+1)+(n+2)+…+(3n-2)=(2n-1)27.我们知道:周长一定的所有矩形中,正方形的面积最大;周长一定的所有矩形与圆中,圆的面积最大,将这些结论类比到空间,可以得到的结论是_______________________.解析:平面图形与立体图形的类比:周长→表面积,正方形→正方体,面积→体积,矩形→长方体,圆→球.答案:表面积一定的所有长方体中,正方体的体积最大;表面积一定的所有长方体和球中,球的体积最大8.如图(甲)是第七届国际数学教育大
6、会(简称ICME-7)的会徽图案,会徽的主体图案是由如图(乙)的一连串直角三角形演化而成的,其中OA1=A1A2=A2A3=…=A7A8=1,如果把图(乙)中的直角三角形依此规律继续作下去,记OA1,OA2,…,OAn,…的长度构成数列{an},则此数列{an}的通项公式为an=__________.解析:根据OA1=A1A2=A2A3=…=A7A8=1和图(乙)中的各直角三角形,由勾股定理,可得a1=OA1=1,a2=OA2===,a3=OA3===,…,故可归纳推测出an=.答案:9.在平面内观察:凸四边形
7、有2条对角线,凸五边形有5条对角线,凸六边形有9条对角线,…,由此猜想凸n边形有几条对角线?解:因为凸四边形有2条对角线,凸五边形有5条对角线,比凸四边形多3条;凸六边形有9条对角线,比凸五边形多4条,…,于是猜想凸n边形的对角线条数比凸(n-1)边形多(n-2)条对角线,由此凸n边形的对角线条数为2+3+4+5+…+(n-2),由等差数列求和公式可得n(n-3)(n≥4,n∈N*).所以凸n边形的对角线条数为n(n-3)(n≥4,n∈N*).10.已知f(x)=,分别求f(0)+f(1),f(-1)+f(2)
8、,f(-2)+f(3),然后归纳猜想一般性结论,并证明你的结论.解:f(x)=,所以f(0)+f(1)=+=,f(-1)+f(2)=+=,f(-2)+f(3)=+=.归纳猜想一般性结论;f(-x)+f(x+1)=.证明如下:f(-x)+f(x+1)=+=+=+===.层级二 应试能力达标1.由代数式的乘法法则类比得到向量的数量积的运算法则:①“mn=nm”类比得到“a·b=b·a”;②
此文档下载收益归作者所有