2019_2020学年高中数学课时分层作业8复数系(含解析)新人教B版选修1_2

2019_2020学年高中数学课时分层作业8复数系(含解析)新人教B版选修1_2

ID:44806162

大小:35.50 KB

页数:4页

时间:2019-10-29

2019_2020学年高中数学课时分层作业8复数系(含解析)新人教B版选修1_2_第1页
2019_2020学年高中数学课时分层作业8复数系(含解析)新人教B版选修1_2_第2页
2019_2020学年高中数学课时分层作业8复数系(含解析)新人教B版选修1_2_第3页
2019_2020学年高中数学课时分层作业8复数系(含解析)新人教B版选修1_2_第4页
资源描述:

《2019_2020学年高中数学课时分层作业8复数系(含解析)新人教B版选修1_2》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、课时分层作业(八)(建议用时:40分钟)[基础达标练]一、选择题1.复数-2i的实部与虚部分别是(  )A.0,2      B.0,0C.0,-2D.-2,0[解析] -2i的实部为0,虚部为-2.[答案] C2.若复数(a2-3a+2)+(a-1)i是纯虚数,则实数a的值为(  )A.1B.2C.-1或-2D.1或2[解析] 由得a=2.[答案] B3.若a,b∈R,i是虚数单位,且b+(a-2)i=1+i,则a+b的值为(  )A.1 B.2C.3   D.4[解析] 由b+(a-2)i=1+i,得b=1,a=3,所以a+b=4.[答案] D4.在下列命题

2、中,正确命题的个数是(  )①两个复数不能比较大小;②若z1和z2都是虚数,且它们的虚部相等,则z1=z2;③若a,b是两个相等的实数,则(a-b)+(a+b)i必为纯虚数.A.0B.1C.2D.3[解析] 两个复数,当它们都是实数时,是可以比较大小的,故①错误;设z1=a+bi(a,b∈R,b≠0),z2=c+di(c,d∈R,且d≠0),因为b=d,所以z2=c+bi.当a=c时,z1=z2,当a≠c时,z1≠z2,故②错误;③当a=b≠0时,(a-b)+(a+b)i是纯虚数,当a=b=0时,(a-b)+(a+b)i=0是实数,故③错误,因此选A.[答案] 

3、A5.已知复数z=(a2-4)+(a-3)i(a,b∈R),则“a=2”是“z为纯虚数”的(  )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件[解析] 因为复数z=(a2-4)+(a-3)i(a,b∈R)为纯虚数⇔⇔a=±2,所以“a=2”是“z为纯虚数”的充分不必要条件.[答案] A二、填空题6.以3i-的虚部为实部,以3i2+i的实部为虚部的复数是________.[解析] 3i-的虚部为3,3i2+i=-3+i,实部为-3,故应填3-3i.[答案] 3-3i7.若x是实数,y是纯虚数,且(2x-1)+2i=y,则x,y的值为__

4、______.[解析] 由(2x-1)+2i=y,得∴x=,y=2i.[答案] x=,y=2i8.给出下列说法:①复数由实数、虚数、纯虚数构成的;②满足x2=-1的数x只有i;③形如bi(b∈R)的数不一定是纯虚数;④复数m+ni的实部一定是m.其中正确说法的个数为________.[解析] ③中,b=0时,bi=0不是纯虚数.故③正确;①中,复数分为实数与虚数两大类;②中,平方为-1的数是±i;④中,m,n不一定为实数,故①②④错误.[答案] 1三、解答题9.已知复数z=m(m-1)+(m2+2m-3)i,当实数m取什么值时:(1)复数z是零;(2)复数z是纯

5、虚数.[解] (1)∵z是零,∴解得m=1.(2)∵z是纯虚数,∴解得m=0.综上,当m=1时,z是零;当m=0时,z是纯虚数.10.已知集合M={1,(m2-2m)+(m2+m-2)i},P={-1,1,4i},若M∪P=P,求实数m的值.[解] 因为M∪P=P,所以M⊆P,即(m2-2m)+(m2+m-2)i=-1或(m2-2m)+(m2+m-2)i=4i.由(m2-2m)+(m2+m-2)i=-1,得解得m=1;由(m2-2m)+(m2+m-2)i=4i,得解得m=2.综上可知,m=1或m=2.[能力提升练]1.已知复数z=a2+(2a+3)i(a∈R)的

6、实部大于虚部,则实数a的取值范围是(  )A.-1或3    B.{a

7、a>3或a<-1}C.{a

8、a>-3或a<1}D.{a

9、a>3或a=-1}[解析] 由已知可以得到a2>2a+3,即a2-2a-3>0,解得a>3或a<-1,因此,实数a的取值范围是{a

10、a>3或a<-1}.[答案] B2.若复数cosθ+isinθ和sinθ+icosθ相等,则θ值为(  )A.B.或πC.2kπ+(k∈Z)D.kπ+(k∈Z)[解析] 由复数相等定义得∴tanθ=1,∴θ=kπ+(k∈Z).[答案] D3.若log2(x2-3x-2)+ilog2(x2+2x+1)>1,则

11、实数x的值是________.[解析] ∵log2(x2-3x-2)+ilog2(x2+2x+1)>1,∴∴∴∴x=-2.[答案] -24.已知关于x的方程x2+(k+2i)x+2+ki=0有实根x0,求x0以及实数k的值.[解] x=x0是方程的实根,代入方程并整理,得(x+kx0+2)+(2x0+k)i=0.由复数相等的充要条件,得解得或∴方程的实根为x0=或x0=-,相应的k值为k=-2或k=2.

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。