2018年四川省成都市高考数学一诊试卷(理科)(附解析)

2018年四川省成都市高考数学一诊试卷(理科)(附解析)

ID:44170038

大小:2.08 MB

页数:14页

时间:2019-10-19

2018年四川省成都市高考数学一诊试卷(理科)(附解析)_第1页
2018年四川省成都市高考数学一诊试卷(理科)(附解析)_第2页
2018年四川省成都市高考数学一诊试卷(理科)(附解析)_第3页
2018年四川省成都市高考数学一诊试卷(理科)(附解析)_第4页
2018年四川省成都市高考数学一诊试卷(理科)(附解析)_第5页
资源描述:

《2018年四川省成都市高考数学一诊试卷(理科)(附解析)》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、2018年成都市高2016届高三第一次诊断考试数学试题(理科)第Ⅰ卷(选择题,共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,则(A)(B)(C)(D)2.在中,“”是“”的(A)充分不必要条件(B)必要不充分条件(C)充要条件(D)既不充分也不必要条件3.如图为一个半球挖去一个圆锥后的几何体的三视图,则剩余部分与挖去部分的体积之比为(A)(B)(C)(D)4.设,,,则a,b,c的大小顺序是(A)(B)(C)(D)开始结束是否5.已知为空间中两条不同的直线,为空间中两个不同的平

2、面,下列命题中正确的是(A)若,则(B)若,则(C)若,则(D)若,则6.执行如图所示程序框图,若使输出的结果不大于50,则输入的整数的最大值为(A)4(B)5(C)6(D)77.已知菱形边长为2,,点P满足,.若,则的值为(A)(B)(C)(D)148.过双曲线的左顶点作斜率为1的直线,该直线与双曲线两条渐近线的交点分别为.若,则此双曲线的离心率为(A)(B)(C)(D)9.设不等式组表示的平面区域为.若指数函数且的图象经过区域上的点,则的取值范围是(A)(B)(C)(D)10.如果数列中任意连续三项奇数项与连续三项偶数项均能构成一个三角形的边长,则称为“亚

3、三角形”数列;对于“亚三角形”数列,如果函数使得仍为一个“亚三角形”数列,则称是数列的一个“保亚三角形函数”().记数列的前项和为,,且,若是数列的“保亚三角形函数”,则的项数的最大值为(参考数据:,)(A)(B)(C)(D)第Ⅱ卷(非选择题,共100分)二、填空题:本大题共5小题,每小题5分,共25分.11.设复数满足(其中为虚数单位),则.甲乙4758769924112.的展开式中,的系数是.13.甲、乙两人在5次综合测评中成绩的茎叶图如图所示,其中一个数字被污损,记甲,乙的平均成绩分别为,,则的概率是.14.如图,某房地产公司要在一块矩形宽阔地面上开发物

4、业,阴影部分是不能开发的古建筑群,且要求用在一条直线上的栏栅进行隔离,古建筑群的边界为曲线的一部分,栏栅与矩形区域边界交于点,.则面积的最小值为.15.已知函数.若存在使得函数的值域为,14则实数的取值范围是.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.16.(本小题满分12分)已知等比数列的公比,且.(Ⅰ)求的值;(Ⅱ)若,求数列的前项和.17.(本小题满分12分)某类题库中有9道题,其中5道甲类题,每题10分,4道乙类题,每题5分.现从中任意选取三道题组成问卷,记随机变量为此问卷的总分.(Ⅰ)求的分布列;(Ⅱ)求的数学期望

5、.18.(本小题满分12分)已知向量m,n,设函数.(Ⅰ)求函数取得最大值时取值的集合;(Ⅱ)设,,为锐角三角形的三个内角.若,,求的值.19.(本小题满分12分)如图,菱形与正三角形的边长均为2,它们所在平面互相垂直,平面,且.(Ⅰ)求证:平面;(Ⅱ)若,求二面角的余弦值.20.(本小题满分13分)已知椭圆的左右顶点分别为,,点为椭圆上异于的任意一点.14(Ⅰ)求直线与的斜率之积;(Ⅱ)设,过点作与轴不重合的任意直线交椭圆于,两点.则是否存在实数,使得以为直径的圆恒过点?若存在,求出的值;若不存在,请说明理由.21.(本小题满分14分)已知函数.(Ⅰ)当时,

6、求函数的单调递减区间;(Ⅱ)当时,设函数.若存在区间,使得函数在上的值域为,求实数的取值范围.14数学(理科)参考答案及评分意见第I卷(选择题,共50分)一、选择题:(本大题共10小题,每小题5分,共50分)1.B;2.B;3.C;4.C;5.D;6.A;7.A;8.B;9.D;10.A.第II卷(非选择题,共100分)二.填空题:(本大题共5小题,每小题5分,共25分)11.;12.;13.;14.;15..三、解答题:(本大题共6小题,共75分)16.解:(Ⅰ)由题意,得,或……………………6分(Ⅱ).……………………12分17.解:(Ⅰ)由题意,的所有可

7、能取值为15,20,25,30.∵,,∴的分布列为:15202530………………7分(Ⅱ)………………12分18.解:(Ⅰ)14……………………3分要使取得最大值,须满足取得最小值.……………………5分当取得最大值时,取值的集合为……………………6分(Ⅱ)由题意,得.………………9分,………………12分19.解:(Ⅰ)如图,过点作于,连接.平面平面,平面平面平面于平面又平面,四边形为平行四边形.平面,平面平面………6分(Ⅱ)连接由(Ⅰ),得为中点,又,为等边三角形,分别以为轴建立如图所示的空间直角坐标系.则14,,设平面的法向量为.由得令,得.设平面的法向量为

8、.由得令,得.故二面角的余弦值是.……

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。