2019版高中数学第二章圆锥曲线与方程2.3.1双曲线的标准方程练习(含解析)新人教B版选修

2019版高中数学第二章圆锥曲线与方程2.3.1双曲线的标准方程练习(含解析)新人教B版选修

ID:43926665

大小:38.48 KB

页数:3页

时间:2019-10-16

2019版高中数学第二章圆锥曲线与方程2.3.1双曲线的标准方程练习(含解析)新人教B版选修_第1页
2019版高中数学第二章圆锥曲线与方程2.3.1双曲线的标准方程练习(含解析)新人教B版选修_第2页
2019版高中数学第二章圆锥曲线与方程2.3.1双曲线的标准方程练习(含解析)新人教B版选修_第3页
资源描述:

《2019版高中数学第二章圆锥曲线与方程2.3.1双曲线的标准方程练习(含解析)新人教B版选修》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、2.3.1 双曲线的标准方程课时过关·能力提升1.若双曲线的方程为x210-y26=1,则它的焦点坐标是(  )A.(±2,0)B.(±4,0)C.(0,±2)D.(0,±4)解析:因为c2=a2+b2=10+6=16,焦点在x轴上,所以焦点坐标为(4,0),(-4,0).答案:B2.若方程x21+k-y21-k=1表示双曲线,则k的取值范围是(  )A.-10C.k≤0D.k>1或k<-1解析:因为方程x21+k-y21-k=1表示双曲线,所以有(1+k)(1-k)>0,解得-1

2、4+y2m=1与双曲线x2m-y22=1有相同的焦点,则实数m的值为(  )A.1B.1或3C.1或3或-2D.3解析:由题意可知m>0,于是焦点都在x轴上,故有4-m=m+2,解得m=1.答案:A4.已知方程ax2-ay2=b,且ab<0,则它表示的曲线是(  )A.焦点在x轴上的双曲线  B.圆C.焦点在y轴上的双曲线  D.椭圆解析:原方程可变形为x2ba-y2ba=1,即y2-ba-x2-ba=1.可知它表示焦点在y轴上的双曲线.答案:C★5.与双曲线x216-y24=1共焦点,且过点(32,2)的双曲线的标准方程为( 

3、 )A.x28-y212=1B.-x28+y212=1C.-x212+y28=1D.x212-y28=1解析:由题意知,c2=16+4=20,设所求的双曲线方程为x2a2-y2b2=1(a>0,b>0),则a2+b2=20,且18a2-4b2=1,解得a2=12,b2=8.所以双曲线的标准方程为x212-y28=1.答案:D6.已知圆C:x2+y2-6x-4y+8=0,以圆C与坐标轴的交点分别作为双曲线的一个焦点和顶点,则适合上述条件的双曲线的标准方程为        . 解析:令x=0,得y2-4y+8=0,方程无解,即该圆与

4、y轴无交点.令y=0,得x2-6x+8=0,解得x=2或x=4,所以a=2,c=4,b2=c2-a2=16-4=12,且焦点在x轴上.故双曲线的标准方程为x24-y212=1.答案:x24-y212=17.已知F是双曲线x24-y212=1的左焦点,点A(1,4),P是双曲线右支上的动点,则

5、PF

6、+

7、PA

8、的最小值为   . 解析:设右焦点为F1,依题意,有

9、PF

10、=

11、PF1

12、+4,∴

13、PF

14、+

15、PA

16、=

17、PF1

18、+4+

19、PA

20、=

21、PF1

22、+

23、PA

24、+4≥

25、AF1

26、+4=5+4=9,当A,P,F1三点共线时取等号.答案:9★8

27、.已知双曲线x24-y2=1的两个焦点分别为F1,F2,点P在双曲线上,且满足∠F1PF2=π2,则△F1PF2的面积是     . 解析:不妨设P为双曲线左支上的点,F1为左焦点,

28、PF1

29、=r1,

30、PF2

31、=r2,则r2-r1=4,r12+r22=20,①②②-①2,得r1r2=2.所以S△F1PF2=12r1r2=1.答案:19.已知双曲线的焦点为F1(0,-6),F2(0,6),且经过点(2,-5),求该双曲线的标准方程.分析:由焦点坐标可知,焦点在y轴上,可设方程为y2a2-x2b2=1(a>0,b>0),又知c=6,

32、再把点代入即可求得.解:设所求的双曲线方程为y2a2-x2b2=1(a>0,b>0),则有25a2-4b2=1,a2+b2=62,解得a=25,b=4.故所求的双曲线的标准方程为y220-x216=1.★10.已知双曲线的焦点在坐标轴上,且双曲线经过M(1,1),N(-2,5)两点,求双曲线的标准方程.分析:此题由于不知道焦点在哪个坐标轴上,所以应先分两种情况来讨论,再把两点代入.此题还可以先设双曲线的方程为Ax2+By2=1(AB<0),再把两点代入求解.解法一当焦点在x轴上时,设所求的双曲线的标准方程为x2a2-y2b2=1

33、(a>0,b>0).因为M(1,1),N(-2,5)两点在双曲线上,所以1a2-1b2=1,(-2)2a2-52b2=1,解得a2=78,b2=7.当焦点在y轴上时,设双曲线的标准方程为y2a2-x2b2=1(a>0,b>0),同理,有1a2-1b2=1,52a2-(-2)2b2=1,解得a2=-7,b2=-78,舍去.故所求的双曲线的标准方程为x278-y27=1.解法二设所求的双曲线的标准方程为Ax2+By2=1(AB<0).因为M(1,1),N(-2,5)两点在双曲线上,代入上述方程有A+B=1,4A+25B=1,解得A=

34、87,B=-17.故所求的双曲线的标准方程为x278-y27=1.

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。