2019_2020学年高中数学周周回馈练5(含解析)新人教A版必修4

2019_2020学年高中数学周周回馈练5(含解析)新人教A版必修4

ID:43498572

大小:31.80 KB

页数:5页

时间:2019-10-08

2019_2020学年高中数学周周回馈练5(含解析)新人教A版必修4_第1页
2019_2020学年高中数学周周回馈练5(含解析)新人教A版必修4_第2页
2019_2020学年高中数学周周回馈练5(含解析)新人教A版必修4_第3页
2019_2020学年高中数学周周回馈练5(含解析)新人教A版必修4_第4页
2019_2020学年高中数学周周回馈练5(含解析)新人教A版必修4_第5页
资源描述:

《2019_2020学年高中数学周周回馈练5(含解析)新人教A版必修4》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、周周回馈练一、选择题1.已知a,b满足

2、a

3、=1,

4、b

5、=4,且a·b=2,则a与b的夹角为(  )A.B.C.D.答案 C解析 设a,b的夹角为θ.因为cosθ===,θ∈[0,π],所以θ=.故选C.2.已知向量a=(2,1),b=(-1,k),a·(2a-b)=0,则k=(  )A.-12B.-6C.6D.12答案 D解析 2a-b=(4,2)-(-1,k)=(5,2-k),由a·(2a-b)=0,得(2,1)·(5,2-k)=0,所以10+2-k=0,解得k=12.3.已知平面向量a=(2,-1),b=(1,1

6、),c=(-5,1),若(a+kb)∥c,则实数k的值为(  )A.2B.C.D.-答案 B解析 a+kb=(2+k,-1+k),c=(-5,1),由(a+kb)∥c,得(2+k)×1-(-1+k)×(-5)=0,解得k=,故选B.4.已知a=(2,4),则与a垂直的单位向量的坐标是(  )A.或B.或C.或D.或答案 D解析 设所求向量的坐标为(x,y),由题意可知,解得或故所求向量的坐标为或.5.已知平面向量a,b,

7、a

8、=1,

9、b

10、=,且

11、2a+b

12、=,则向量a与向量a+b的夹角为(  )A.B.C.D.π答案 

13、B解析 ∵

14、2a+b

15、2=4

16、a

17、2+4a·b+

18、b

19、2=7,

20、a

21、=1,

22、b

23、=,∴4+4a·b+3=7,∴a·b=0,∴a⊥b.如图所示,a与a+b的夹角为∠COA.∵tan∠COA==,∴∠COA=,即a与a+b的夹角为.6.在平面直角坐标系中,O为坐标原点,已知A(3,1),B(-1,3),若点C满足

24、A+B

25、=

26、A-B

27、,则点C的轨迹方程是(  )A.x+2y-5=0B.2x-y=0C.(x-1)2+(y-2)2=5D.3x-2y-11=0答案 C解析 由

28、A+B

29、=

30、A-B

31、知A⊥B,所以点C的轨迹是以

32、

33、

34、为直径的圆,圆心为线段AB的中点(1,2),半径为,故点C的轨迹方程为(x-1)2+(y-2)2=5.二、填空题7.已知向量a=(1,1),b=(2,-3),若λa-2b与a垂直,则实数λ=________.答案 -1解析 解法一:λa-2b=(λ,λ)-2(2,-3)=(λ-4,λ+6).由于(λa-2b)⊥a⇔(λa-2b)·a=0,故(λ-4)+(λ+6)=0,得λ=-1.解法二:由于(λa-2b)⊥a⇔(λa-2b)·a=0,即λa2=2a·b,从而λ(1+1)=2(1,1)·(2,-3),即2λ=-2,故λ=

35、-1.8.若平面向量b与向量a=(1,-2)的夹角为180°,且

36、b

37、=3,则b=________.答案 (-3,6)解析 由题意,知a与b共线且方向相反,所以b=λa(λ<0).设b=(x,y),则(x,y)=λ(1,-2),即因为

38、b

39、=3,所以x2+y2=45,即λ2+4λ2=45.解得λ=-3(正值舍去).所以b=(-3,6).9.已知正方形ABCD的边长为2,=2,=(+),则·=________.答案 -解析 如图,以点B为原点,BC所在直线为x轴,AB所在直线为y轴建立平面直角坐标系.则B(0,0),E,

40、D(2,2).由=(+)知F为BC的中点,故=(-1,-2).又∵=,∴·=-2-=-.三、解答题10.已知

41、a

42、=2,

43、b

44、=3,a与b的夹角为120°,求:(1)a·b;(2)a2-b2;(3)(2a-b)·(a+3b);(4)

45、a+b

46、.解 (1)a·b=

47、a

48、

49、b

50、cos120°=2×3×-=-3.(2)a2-b2=

51、a

52、2-

53、b

54、2=4-9=-5.(3)(2a-b)·(a+3b)=2a2+5a·b-3b2=2

55、a

56、2+5

57、a

58、

59、b

60、cos120°-3

61、b

62、2=8-15-27=-34.(4)

63、a+b

64、====.

65、11.如图所示,已知△ABC是边长为3的等边三角形,=2λ,=λ<λ<1,过点F作DF⊥BC,交AC边于点D,交BA的延长线于点E.(1)当λ=时,设=a,=b,用向量a,b表示;(2)当λ为可值时,·取得最大值?解 (1)由题意可知==b,==a,故=-=-a+b.(2)由题意知

66、

67、=3λ,

68、

69、=3-3λ,

70、

71、=6λ,

72、

73、=6λ-3,所以·=

74、

75、·

76、

77、cosB=(6λ-3)·(3-3λ)cos60°=-9λ2+λ-,又λ∈,1,所以当λ=-=时,·取得最大值.12.如图,用两根绳子把重10N的物体W吊在水平杆AB上,

78、∠ACW=150°,∠BCW=120°.求A和B处所受力的大小(绳子的重量忽略不计).解 设A,B处所受力分别为f1,f2,物体所受的重力用f表示.则f1+f2+f=0.以重力作用点C为f1,f2的始点,作平行四边形CFWE,使CW为对角线,则=-f2,=-f1,=f.∠ECW=180°-150°=30°,∠FCW=180°-12

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。