高一数学人教A版必修1学案:课堂探究22对数函数第3课时含解析

高一数学人教A版必修1学案:课堂探究22对数函数第3课时含解析

ID:42934204

大小:73.00 KB

页数:4页

时间:2019-09-23

高一数学人教A版必修1学案:课堂探究22对数函数第3课时含解析_第1页
高一数学人教A版必修1学案:课堂探究22对数函数第3课时含解析_第2页
高一数学人教A版必修1学案:课堂探究22对数函数第3课时含解析_第3页
高一数学人教A版必修1学案:课堂探究22对数函数第3课时含解析_第4页
资源描述:

《高一数学人教A版必修1学案:课堂探究22对数函数第3课时含解析》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、课堂探究探究一对数函数的概念判断一个函数是对数函数必须是形如y=log0,且gHI)的形式,即必须满足以下条件:(1)系数为1.(2)底数为大于()且不等于1的常数.(3)对数的真数仅有自变量x.【典型例题1】下列函数中,哪些是对数函数?(1)y=logax2(a>0,且dHl);(2)y=log2x—1;(3)歹=21og«x;(4)y=lo即心>0,且兀H1);(5)y=log5X.思路分析:根据对数函数的定义进行判断.解:只有(5)为对数函数.(1)中真数不是自变量x,故不是对数函数;(

2、2)中对数式后减1,故不是对数函数;(3)中logxx前的系数是2,而不是1,故不是对数函数;(4)中底数是自变量兀,而非常数°,故不是对数函数.探究二对数函数的图象问题(1、1.画对数函数y=log^的图象时,应牢牢抓住三个关键点(el),(1,0),—,-1•&丿2.对数函数图象与直线y=l的交点横坐标越大,则对应的对数函数的底数越大.3.函数y=log忒(a>0,且dHl)的底数变化对图象位置的影响11-XI—7=log2x"J=log5xa大(Q>1)23y^plog丄XAxy=og^xq小

3、(0l时,d越大,图彖越靠近尤轴,当0SV1时,G越小,图象越靠近兀轴.(2)左右比较:(比较图彖与)=1的交点)交点的横坐标越大,对应的对数函数的底数越大.【典型例题2]画出下列函数的图象,并根据图象写出函数的定义域与值域以及单调区间:(l)y=log3(x—2);(2)j=

4、log

5、x.2解:(1)函数y=log3(兀一2)的图象如图®.其定义域为(2,+8),值域为R,在区间(2,+8)上是增函数.(log,%,0

6、1,2其图象如图②.log2x,X>1,其定义域为(0,+°°),值域为[0,+°°),在(0,1]上是减函数,在(1,+8)上是增函数.规律总结1.函数y=logrt(x+m)(a>0,且gHI)的图象可白函数)‘=log^v的图象向左(m>0)或向右(〃?<0)平移

7、加

8、个单位而得到•2.含有绝对值的函数的图象变换是一种对称变换.一般地,的图象是保留./U)的图象在x轴上方的部分,并把%轴下方的部分以兀轴为对称轴翻折到x轴上方而得到的.探究三与对数函数有关的定义域问题求与对数函数有关的函数定义域时

9、,除遵循前面求函数定义域的方法外,还要对这种函数自身有如下要求:一是要特别注意真数大于零;二是要注意底数.【典型例题3】求下列函数的定义域:(i)y=Jlg(2-x);⑵log3(3x-2)(3)y=隔(4-x)x—3解:(1)要使函数式有意义,则lg(2—x)M0,2~x>0,2~x>1,.•.xW1.故函数的定义域为(―°°,1J.(2)要使函数式有意义,则log3(3x—2)H0,.J3x_2>0,]3x—2工1,2.*.x>—,且兀Hl.3(2}故函数的定义域为一,1U(l,+°°).<3丿[

10、4—x>0,(3)要使函数有意义,则有彳解得兀<4,且xH3,[x-3丰0,故函数的定义域为(一g,3)U(3,4)・探究四易错辨析易错点求函数的定义域时先对解析式变形【典型例题4]已知函数/U)=1隅5(兀一1)2,求7W的定义域.错解:/U)=21og5(x—1),要使几V)有意义,则x-l>0,解得Q1,则人兀)的定义域是(1,+°°).错因分析:緒解中,由于对./U)的解析式变形后再求定义域,导致出错.正解:要使7U)有意义,则(x-l)2>o,解得xHl,则./U)的定义域是(一8,1)U(

11、1,+°°).反思求函数/U)的定义域时,不能对7U)的解析式变形,否则会导致求出的定义域“变大”或“缩小”.

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。