欢迎来到天天文库
浏览记录
ID:42899522
大小:169.50 KB
页数:3页
时间:2019-09-23
《4.5三角形中位线》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、4.4 三角形的中位线教学目标1、了解三角形的中位线的概念;2、了解三角形的中位线的性质“三角形中位线平行于第三边且等于第三边的一半”和定理“过三角形一边中点且平行另一边的直线平分第三边”;3、能应用三角形中位线概念及定理进行有关的论证和计算,进一步提高学生的计算能力;4、通过定理证明及一题多解,逐步培养学生的分析问题和解决问题的能力。教学重点、难点:重点是三角形的中位线定理。三角形的中位线定理的证明,因为其中添加辅助线的方法和思想学生比易掌握,是本节教学的难点。教学设想:结合教材编写思路,首先
2、要创造性使用教材中的问题情景,把教材中不动的问题情景转化为学生互动的问题情景,使学生在互动中去感受。而有关的一些知识,都是在教师的引导下,经过学生充分的思考、讨论,并结合大量特例,由学生自己归纳、总结发现。此外,还要根据实际情况,对不同的学生进行有针对性的指导,使不同的学生都有发展,真正把课堂还给学生,使学生真正地变为课堂学习的主人,老师只是学生学习的引导者和组织者。教学过程一、创设情境,引入新课情境1、如图,为了测量一个池塘的宽BC,在池塘一侧的平地上选一点A,再分别找出线段AB、AC的中点D
3、、E,若测出DE的长,就可以求出池塘的宽BC,你知道这是为什么吗?情境2、如图,如图所示,在平行四边形ABCD中,M、N分别为BC、DA中点,AM、CN分别交BD于点E、F,证明BE=EF=FD。首先要让学生叙述上述两个问题的类似之处:在三角形中都有两边的中点(隐含三角形的中位线)。在让学生口述清净2中问题的证明思路。在这里,只需要分析思路即可:要证三条线段相等,一般情况下证两两线段相等。如要证BE=EF=FD,只要BE=EF和EF=FD即可。因此要首先证出四边形AMCN是平行四边形,然后结合定
4、理“过三角形一边中点且平行另一边的直线平分第三边”证出。(在后面补充介绍)。二、合作学习,发展能力:2、动手操作:剪一刀,将一张三角形纸片剪成一张三角形纸片和一张梯形纸片(1)如果要求剪得的两张纸片能拼成平行的四边形,剪痕的位置有什么要求?(2)要把所剪得的两个图形拼成一个平行四边形,可将其中的三角形做怎样的图形变换?3、引导学生概括出中位线的概念:连结三角形两边中点的线段叫做三角形的中位线。(中位线是三角形与梯形中的一条重要线段,由于它的性质与线段的中点及平行线紧密相连,因此,它在几何图形的计
5、算及证明中有着广泛的应用。三角形中位线定理不但给出了三角形或梯形中线段的位置关系,而且给出了线段的数量关系,为平面几何中证明线段平行和线段相等提供了新的思路。)问题:(1)三角形有几条中位线?(2)三角形的中位线与中线有什么区别?——启发学生得出:三角形的中位线的两端点都是三角形边的中点,而三角形中线只有一个端点是边中点,另一端点上三角形的一个顶点。并结合三角形中线的定义,让学生明确两者区别,可做一练习,在⊿ABC中,画出中线、中位线4、猜想:DE与BC的关系?(位置关系与数量关系)三、师生互动
6、,探究新知1、证明你的猜想(引导学生写出已知,求证,并启发分析)已知:⊿ABC中,D、E分别是AB、AC的中点,求证:DEBC。启发1:证明直线平行的方法有哪些?(由角的相等或互补得出平行,由平行四边形得出平行等)启发2:证明线段的倍分的方法有哪些?(截长或补短)学生分小组讨论,教师巡回指导,经过分析后,师生共同完成推理过程,板书证明过程,强调有其他证法。证明:如图,以点E为旋转中心,把⊿ADE绕点E,按顺时针方向旋转180゜,得到⊿CFE,则D,E,F同在一直线上,DE=EF,且⊿ADE≌⊿C
7、FE。∴∠ADE=∠F,AD=CF,∴AB∥CF。又∵BD=AD=CF,∴四边形BCFD是平行四边形(一组对边平行且相等的四边形是平行四边形),∴DF∥BC(根据什么?),∴DEBC。2、进行题后小结:对于一些没能直接进行证明的问题,我们通常采用的思想是将它转化为我们熟悉的图形,如上面的证明方法,就是将三角形的中位线(新知识)转化为平行四边形和全等三角形(旧知识),进行证明的,当然这个定理的证明方法很多,关键在于如何添加辅助线。可以引导学生用不同的方法来证明以活跃学生的思维,开阔学生思路,从而提
8、高分析问题和解决问题的能力。但也应指出,当一个命题有多种证明方法时,要选用比较简捷的方法证明。如右图中的辅助线等。我们可以发现:主要思路还是进行适当的转化。l)延长DE到F,使EF=DE,连结CF,由△ADE≌△CFE,可得ADFC。(2)延长DE到F,使EF=DE,利用对角线互相平分的四边形是平行四边形,可得ADFC。(3)过点C作CF∥AB,与DE延长线交于F,通过证△ADE≌△CFE,可得ADFC。3、启发学生归纳定理,并用文字语言表达:三角形中位线平行于第三边且等于第三边的一半——三角形
此文档下载收益归作者所有