资源描述:
《正比例函数的图象与性质 (7)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、19.2.1正比例函数图像与性质一、教学目标(1)知识目标:能根据正比例函数的图像,观察归纳出函数的性质;并会简单应用。(2)能力目标:逐步培养学生的观察能力,概括的能力,通过教师指导发现知识,初步培养学生数形结合的思想以及由一般到特殊的数学思想。(3)情感目标:激发学生学习数学的兴趣和积极性,逐步培养学生实事求是的科学态度。二、教学的重点和难点教学重点:正比例函数的性质及其应用。教学难点:发现正比例函数的性质。三、教学方法与学法指导教学方法:通过本节课的教学,我选用引导发现法和直观演示法,本节课的难点是发现正比例函数的性质,通过教师的引导,启发调动学生的积极性,让学生在课堂上多活
2、动(画图)、多观察(图像),主动参与到整个教学活动中来,最后发现其性质。学法指导:教师引导学生学会观察、归纳的学习方法。四、教学过程:(一)情景引入当今网络已经越来越普及,可以用电脑上网,手机上网等,我们班级有位同学经常上网,他的打字速度非常快,达到每分钟可以输入两百个汉字,真是高手!如果他输入的汉字个数用y(单位:百个)来表示,那么y与输入时间x(单位:分钟)的函数关系式是什么? 这个函数是我们前面学习的正比例函数吗? 用描点法,你能画出这个函数的图象吗?(二)学习新知画出下列正比例函数的图象,并进行比较,(1)y=2x; 解:(1)列表:函数y=2x中自变量x可以是任意实数.列
3、表表示几组对应值:x-3-2-10123y-6-4-20246描点,连线,画出图象,-2-2011-1-12Y=-2x如图所示:练习:在同一坐标系中,画出下列函数的图象,并对它们进行比较: y=2xy=-2x问题:观察所画的四个函数图象,填写你发现的规律: ①四个函数图象都是经过 的直线. ②函数y=2x的图象经过第 象限,从左向右 (呈什么趋势),即y随x的增大而 ; ③函数y=-2x的图象经过第 象限,从左向右 ,即y随x的增大而 。小结正比例函数y=kx(k≠0)的性质:(1)图象是经过原点的一条直线.(2)当k>0时,图象经过第一、三
4、象限,从左向右上升,y随x的增大而增大(递增).(3)当k<0时,图象经过第二、四象限,从左向右下降,y随x的增大而减小(递减).思考画正比例函数的图象时,怎样画最简单?为什么?正比例函数y=kx(k是常数,k≠0)的图象是经过原点的一条直线,由于两点确定一条直线,因此画正比例函数图象时我们只需描点(0,0),点(1,k),两点连线即可.说明:正是由于正比例函数y=kx(k是常数,k≠0)的图象是一条直线,我们可以称它为直线y=kx知识拓展(1)正比例函数y=kx可以说成y与x成正比例,要求函数关系式,只需通过x,y的一组对应值求出k,从而确定关系式.(2)正比例函数的图象是过原点
5、的直线,当k>0时,直线从左到右呈上升趋势,经过第一、三象限;当k<0时,直线从左到右呈下降趋势,经过第二、四象限.画正比例函数的图象时,只需要选取除原点外的一点,再过原点和选取点画直线即可,选取的点一般为点(1,k).(3)正比例函数的性质可以逆用.如当正比例函数y=kx(k≠0)中y随x的增大而增大时,k>0,反之,k<0;若正比例函数的图象过第一、三象限,则k>0等.例:(补充)(1)已知一个正比例函数的图象经过点(-1,3),则这个正比例函数的表达式是?〔解析〕设正比例函数的解析式为y=kx,把点(-1,3)代入解析式求出k的值即可.解:(1)设正比例函数的解析式为y=kx
6、, ∵正比例函数的图象经过点(-1,3), ∴-k=3,∴k=-3, ∴这个正比例函数的表达式是y=-3x.例:(补充)已知点(2,-4)在正比例函数y=kx的图象上.(1)求k的值;〔解析〕把点(2,-4)代入y=kx中列方程进行求解.解:∵点(2,-4)在正比例函数y=kx的图象上,∴2k=-4,∴k=-2.(2)若点(-1,m)在函数y=kx的图象上,试求出m的值;〔解析〕把点(-1,m)代入(1)中函数解析式列方程进行求解.解:由k=-2得y=-2x,∵点(-1,m)在函数y=-2x的图象上, ∴m=-2×(-1)=2.教学反思由于课堂的容量较大,学生思考问题的时间显得相对
7、不足,学困生就显得很吃力。尤其在利用“两点法”进行画函数图象时,学生掌握得不是很好,主要是因为不知如何列两点式的表格,教师如果利用投影给出一个范例,估计会好的多。同时由于课堂的容量较大,有些地方教师的点拨不到位,不够透彻,对教材挖掘不够深。