欢迎来到天天文库
浏览记录
ID:41565384
大小:72.88 KB
页数:13页
时间:2019-08-27
《第二十六章《反比例函数》教案》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、第二十六章反比例函数本章内容属于“数与代数”领域,是在己经学习了平面直角坐标系和一次函数的基础上,再一次进入函数范畴,让学生进一步理解函数的内涵,并感受现实世界屮存在各种函数,掌握如何应用函数知识解决实际问题.反比例函数是最基本的函数之一,是学习后续各类函数的基础.本章的主要内容是反比例函数,教材中从几个学生熟悉的实际问题出发,引入反比例函数的概念,使学生逐步从对具体函数的感性认识上升到对抽象的反比例函数概念的理性认识.第一节的内容是反比例函数的概念以及反比例函数的图彖和性质.反比例函数y=*k为常数,kHO)的图象分布在两个象限,当k>0时,图象分布在第一、三象限,y随x的增大(减小)而减
2、小(增大);当kvO时,图象分布在第二、四象限,y随x的增大(减小)而增大(减小).第二节的内容是如何利用反比例函数解决现实世界中的实际问题以及如何用反比例函数解释现实世界中的一些现象.教学中要注重数学思想的渗透,注意做好与已学内容的衔接,还要加强反比例函数与正比例函数的对比.本章的重点是反比例函数的概念、图象和性质,图象是直观地描述和研究函数的重要工具.教材屮给出了大量的具体的反比例函数的例子,用以加深学生对所学知识的理解和融会贯通.本章的难点是对反比例函数及其图象和性质的理解和常握,教学时在这方面要投入更多的精力.:«<:«<本章教学约需4课时,具体分配如下:26-1反比例函数3课时26
3、-2实际问题与反比例函数1课时26・1反比例函数26.1.1反比例函数数学目际:«<知识与技能1•使学生理解并掌握反比例函数的概念.2•能判断•个给定的函数是否为反比例函数,并会用待定系数法求函数解析式.过程与方法能根据实际问题中的条件确定反比例函数的解析式,体会函数的建模思想.情感、态度与价值观经历抽彖反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概念,体会数学学习的重要性,培养学生学习数学的兴趣.重吕难占审占f\理解反比例函数的概念,能根据己知条件写出函数解析式.难点理解反比例函数的概念.教学设计一、创设情境,讲授新课活动1.问题:下列问题中,变量间的对应关系可用怎样的
4、函数关系式表示?这些函数有什么共同特点?⑴京沪线铁路全程为1463血乘坐某次列车所用时间t(单位M)随该列车平均速度v(单位:km/h)的变化而变化;(2)某住宅小区要种植一个面积为1000加$的矩形草坪,草坪的长y随宽x的变化而变化;(3)已知北京市的总面积为1.68X104平方千米,人均占有土地面积S(单位:平方千米/人)随全市人口n(单位:人)的变化而变化.解:(l)t=1463(2)y-x;1.68X104其屮,v是自变量,t是v的函数;X是白变量,y是X的函数;n是自变量,S是n的函数.上面的函数关系式,都具有y=£的形式,其中k是非零常数.活动2.下列问题屮,变量间的对应关系可用
5、怎样的函数关系式表示?(1)一个游泳池的容积为2000m3,注满游泳池所用的时间t随注水速度v的变化而变化;(2)某立方体的体积为1000纫F,立方体的高h随底面积S的变化而变化.4…20001000解:(l)t—v;(2)h—$•概念:如杲两个变量x,y之间的关系可以表示成的形式,那么y是x的反比例函ZY数,反比例函数的自变量X不能为零.活动3.问题1:下列哪个等式屮的y是X的反比例函数?Vy=4x,丄=3,y=6x+l,xy=123・x问题2:已知y是x的反比例函数,当x=2时,y=6.写出y关于x的函数关系式.求当x=4吋,y的值.师生行为:学生独立思考,然后小组合作交流.教师巡视,查
6、看学生完成的情况,并给予及吋引导.1・解:只有xy=123是反比例函数.1•分析:因为y是x的反比例函数,所以可设,再把x=2和y=6代入上式就可求出常数k的值.解:设y=K‘因为x=2时,y=65X所以有6=2,解得k=12,12因此y=乎,12I?把x=4代入y=¥'得y=芍=3.二、例题讲解例1下列等式中,哪些是反比例函数?(l)y=
7、;(2)y=—孚(3)xy=21;(4)y=^^;(5)y=—女;(6)y=g+3;(7)y=x~4.解:(2)(3)(5)是反比例函数.例2函数y=—二吕中,自变量x的収值范围是•解:xH—2.例3当m収什么值时,函数y=(m—2)x3—n?是反比例函
8、数?lz分析:反比例函数y=:(kH0)的另一种表达式是y=kxT(kH0)、这种写法中x的次数入是一1,因此m的取值必须满足两个条件,即m—2H()且3—n?=—1,特别注意不要遗漏kHO这一条件,也要防止出现3-m2=l的错误.[m—2H0,解:由题意可知3_m2一,解得m=—2.三、巩固练习1•已知y是x的反比例函数,并且当x=3吋,y=—&(1)写出y与x之间的函数关系式;(2)当y=2时,求x的值.
此文档下载收益归作者所有