七年级数学上册 第一章 基本的几何图形 1.4《线段的比较与作法》综合练习 (新版)青岛版

七年级数学上册 第一章 基本的几何图形 1.4《线段的比较与作法》综合练习 (新版)青岛版

ID:41215919

大小:32.00 KB

页数:6页

时间:2019-08-19

七年级数学上册 第一章 基本的几何图形 1.4《线段的比较与作法》综合练习 (新版)青岛版_第1页
七年级数学上册 第一章 基本的几何图形 1.4《线段的比较与作法》综合练习 (新版)青岛版_第2页
七年级数学上册 第一章 基本的几何图形 1.4《线段的比较与作法》综合练习 (新版)青岛版_第3页
七年级数学上册 第一章 基本的几何图形 1.4《线段的比较与作法》综合练习 (新版)青岛版_第4页
七年级数学上册 第一章 基本的几何图形 1.4《线段的比较与作法》综合练习 (新版)青岛版_第5页
资源描述:

《七年级数学上册 第一章 基本的几何图形 1.4《线段的比较与作法》综合练习 (新版)青岛版》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、1.4线段的比较与作法【知能点分类训练】知能点1线段大小的比较方法1.如图1所示,AB=CD,则AC与BD的大小关系是().A.AC>BDB.AC

2、直线AB上,也可能在直线AB外知能点2线段的中点及等分5.已知点C是线段AB上一点,D是AC的中点,BC=4厘米,DB=7厘米,则AB=______厘米,AC=_______厘米.6.如图3所示,C和D是线段的三等分点,M是AC的中点,那么CD=______BC,AB=______MC.(3)7.如果点B在线段AC上,那么下列表达式中:①AB=AC,②AB=BC,③AC=2AB,④AB+BC=AC.能表示B是线段AC的中点的有().A.1个B.2个C.3个D.4个8.如图所示,点C在线段AB上,线段AC=6厘米,BC=4厘米,点M,N分别是AC,BC

3、的中点.(1)求线段MN的长度.(2)根据(1)的计算过程和结果,设AC+BC=a,其他条件不变,你能猜测出MN的长度吗?请用一句简洁的话表述你发现的规律.知能点3线段的基本性质(线段公理)9.如图所示,由A到B有(1),(2),(3)三条路线,最短的路线选(1)的理由是().A.因为它直B.两点确定一条直线C.两点间距离的定义D.两点之间,线段最短10.如图所示,一条河流经过A,B两地,为缩短河道,现将河流改道,怎样才能使两地之间河道最短?11.如图所示,在△ABC中一定存在下面关系:AB+AC>BC,你能说明原因吗?由此你又能得到什么结论呢?12

4、.如图所示,A,B是两个村庄,若要在河边L上修建一个水泵站往两村输水,问水泵站应修在河边的什么位置,才能使铺设的管道最短,并说明理由.【综合应用提高】13.C是线段AB上的中点,D是线段BC上一点,则下列说法不正确的是().A.CD=AC-BDB.CD=AB-BDC.CD=AD-BCD.CD=BC14.如图所示,已知线段AB=80厘米,M为AB的中点,P在MB上,N为PB的中点,且NB=14厘米,求PA的长.15.如图所示,一只昆虫要从正方体的一个顶点A爬到相距它最远的另一个顶点B,哪条路径最短?说明理由.16.如图所示,已知BC=AB=CD,点E,

5、F分别是AB,CD的中点,且EF=60厘米,求AB,CD的长.【开放探索创新】17.如图所示,七年级(2)班的孟飞同学在一张透明纸上画了一条长8厘米的线段MN,并在线段MN上任意找了一个不同于M,N的点C,然后用折纸的方法找出了线段MC,NC的中点A,B,并求出了线段AB的长,想一想,孟飞是如何找到线段MC,NC的中点的?又是如何求出线段AB的长度的?【中考真题实战】18.(南宁)将一张长方形的纸对折,如图可以得到一条折痕,继续对折,对折时每次折痕与上次的折痕保持平行,连续对折三次后,可以得到7条折痕,那么对折四次可以得到_______条折痕,如果对

6、折n次,可以得到______条折痕.19.(青海)已知线段AB,C是AB的中点,D是BC的中点,下面等式不正确的是().A.CD=AC-DBB.CD=AD-BCC.CD=AB-BDD.CD=AB20.(湘潭)如图所示,从A地到B地有多条道路,一般地,人们会走中间的直路,而不会走其他的曲折的路线,这是因为().A.两点之间线段最短B.两直线相交只有一个交点C.两点确定一条直线D.垂线段最短参考答案:1.C(点拨:∵AB=CD,∴AB+BC=CD+BC,∴AC=BD)2.8厘米或6厘米(点拨:分两种情况:①C在线段AB内,②C在线段AB延长线上)3.AB

7、ADCDAD4.D5.1066.67.C(点拨:①②③)8.解:(1)∵AC=6厘米,BC=4厘米,∴AB=AC+BC=10厘米又∵点M是AC的中点,点N是BC的中点,∴MC=AM=AC,CN=BN=BC,∴MN=MC+CN=AC+BC=(AC+BC)=AB=5厘米.(2)由(1)中已知AB=10厘米,求出MN=5厘米,分析(1)的推算过程可知MN=AB,故当AB=a时,MN=a,从而得到发现的规律:线段上任一点把线段分成的两部分的中点间的距离等于原线段长度的一半.9.D10.将A,B两点间的曲线河道改为线段.11.BA+AC与BC可看成由B到C的两

8、条线,一条是折线,即曲线,另一条是直线.根据:两点之间,线段最短.结论:三角形两边之和大于第三边.12.过点

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。