The Derivation about Convolutional Neural Networks

The Derivation about Convolutional Neural Networks

ID:40727413

大小:57.05 KB

页数:7页

时间:2019-08-06

The Derivation about Convolutional Neural Networks_第1页
The Derivation about Convolutional Neural Networks_第2页
The Derivation about Convolutional Neural Networks_第3页
The Derivation about Convolutional Neural Networks_第4页
The Derivation about Convolutional Neural Networks_第5页
资源描述:

《The Derivation about Convolutional Neural Networks》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、TheDerivationaboutConvolutionalNeuralNetworksXuTangNovember5,20141VanillaBack-propagationThroughFullyCon-nectedNetworks1.1FeedforwardPassForamulticlassproblemwithcclassesandNtrainingexamples,thiserrorisgivenby:1∑N∑cEN=(tn−yn)2(1)kk2n=1k=1Becausetheerrorovert

2、hewholedatasetisjustasumovertheindividualerrorsoneachpattern,wewillconsiderbackpropagationwithrespecttoasinglepattern,saythen-thone:∑cn1nn21nn2E=(tk−yk)=∥t−y∥2(2)22k=1Letldenotethecurrentlayer,withtheoutputlayerdesignatedtobelayerLandtheinputlayerdesignatedt

3、obelayer1.Definetheoutputofthislayertobe:xl=f(ul);withul=Wlx(l−1)+bl(3)1.2BackpropagationPassTheerrorswhichwepropagatebackwardsthroughthenetworkcanbethoughtofassensitivitiesofeachunitwithrespecttoperturbationsofthebias.Thatistosay,@E@E@u==(4)@b@u@bsinceinthi

4、scase@u=1.@b1Itisthisderivativethatisbackpropagatedfromhigherlayerstolowerlayers,usingthefollowingrecurrencerelation:l@E=@ul@E@xl=@xl@ul@E′l(5)=◦f(u)@xl∑@E@ul+1=Si◦f′(ul)ll+1@xli=1@ui=(Wl+1)Tl+1◦f′(ul)where“◦”denoteselement-wisemultiplication,andf′(ul)canb

5、edenotedbythis:@E◦f′(ul):::@E◦f′(ul)@xl11@xl1v111v@E◦f′(ul)=......∈Ru∗v(6)@xl...@E◦f′(ul):::@E◦f′(ul)@xlu1@xluv111vThesensitivitiesfortheoutputlayerneuronswilltakeaslightlydifferentform:L@E=@uL@E@xL(7)=@xL@uL=(yn−tn)◦f′(uL)Invectorform,thisiscomputed

6、asanouterproductbetweenthevectorofinputs(whicharetheoutputsfromthepreviouslayer)andthevectorofsensitivities:@E@E@ul=@Wl@ul@Wl@E(@(ul)T)T=@ul@Wl@E@(xl−1)T(Wl)TT(8)=()@ul@(Wl)T@El−1T=(x)@ul=(xl−1)Tll@E∆W=−(9)@Wl22ConvolutionalNeuralNetworks2.1ConvolutionLaye

7、rsEachoutputmapmaycombineconvolutionswithmultipleinputmaps.Ingeneral,wehavethat:∑xl=f(xl−1∗kl+bl)jiijj(10)i∈MjwhereMjrepresentsaselectionofinputmaps,andtheconvolutionisofthe“valid”borderhandlingtypewhenimplementedinMATLAB.2.1.1ComputingtheGradientsWecanrepea

8、tthesamecomputationforeachmapjintheconvolutionallayer,pairingitwiththecorrespondingmapinthesubsamplinglayer:l@Ej=l@uj@E@xl=(11)@xl@ulj@E′l=l◦f(uj)@xjandweknowthat:(@E@E@ujl+1)=@xl@ul+1@xl(12)jj

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。