2.1 Convolutional Neural Networks

2.1 Convolutional Neural Networks

ID:40703521

大小:899.75 KB

页数:30页

时间:2019-08-06

2.1 Convolutional Neural Networks_第1页
2.1 Convolutional Neural Networks_第2页
2.1 Convolutional Neural Networks_第3页
2.1 Convolutional Neural Networks_第4页
2.1 Convolutional Neural Networks_第5页
资源描述:

《2.1 Convolutional Neural Networks》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、CS231nConvolutionalNeuralNetworksforVisualRecognitionTableofContents:•ArchitectureOverview•ConvNetLayers◦ConvolutionalLayer◦PoolingLayer◦NormalizationLayer◦Fully-ConnectedLayer◦ConvertingFully-ConnectedLayerstoConvolutionalLayers•ConvNetArchitectures◦LayerPatterns◦LayerSizin

2、gPatterns◦CaseStudies(LeNet/AlexNet/ZFNet/GoogLeNet/VGGNet)◦ComputationalConsiderations•AdditionalReferencesConvolutionalNeuralNetworks(CNNs/ConvNets)ConvolutionalNeuralNetworksareverysimilartoordinaryNeuralNetworksfromthepreviouschapter:Theyaremadeupofneuronsthathavelearnab

3、leweightsandbiases.Eachneuronreceivessomeinputs,performsadotproductandoptionallyfollowsitwithanon-linearity.Thewholenetworkstillexpressasingledifferentiablescorefunction:Fromtherawimagepixelsononeendtoclassscoresattheother.Andtheystillhavealossfunction(e.g.SVM/Softmax)onthel

4、ast(fully-connected)layerandallthetips/trickswedevelopedforlearningregularNeuralNetworksstillapply.Sowhatdoeschange?ConvNetarchitecturesmaketheexplicitassumptionthattheinputsareimages,whichallowsustoencodecertainpropertiesintothearchitecture.Thesethenmaketheforwardfunctionmo

5、reefficienttoimplementandvastlyreducestheamountofparametersinthenetwork.ArchitectureOverviewRecall:RegularNeuralNets.Aswesawinthepreviouschapter,NeuralNetworksreceiveaninput(asinglevector),andtransformitthroughaseriesofhiddenlayers.Eachhiddenlayerismadeupofasetofneurons,wher

6、eeachneuronisfullyconnectedtoallneuronsinthepreviouslayer,andwhereneuronsinasinglelayerfunctioncompletelyindependentlyanddonotshareanyconnections.Thelastfully-connectedlayeriscalledthe"outputlayer"andinclassificationsettingsitrepresentstheclassscores.RegularNeuralNetsdon'tsc

7、alewelltofullimages.InCIFAR-10,imagesareonlyofsize32x32x3(32wide,32high,3colorchannels),soasinglefully-connectedneuroninafirsthiddenlayerofaregularNeuralNetworkwouldhave32*32*3=3072weights.Thisamountstillseemsmanageable,butclearlythisfully-connectedstructuredoesnotscaletolar

8、gerimages.Forexample,animageofmorerespectiblesize,e.g.200x200x3,wouldleadto

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。