欢迎来到天天文库
浏览记录
ID:40703532
大小:990.14 KB
页数:9页
时间:2019-08-06
《2.2 Understanding and Visualizing Convolutional Neural Networks》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、CS231nConvolutionalNeuralNetworksforVisualRecognition(thispageiscurrentlyindraftform)VisualizingwhatConvNetslearnSeveralapproachesforunderstandingandvisualizingConvolutionalNetworkshavebeendevelopedintheliterature,partlyasaresponsethecommoncriticismthatthelearn
2、edfeaturesinaNeuralNetworkarenotinterpretable.Inthissectionwebrieflysurveysomeoftheseapproachesandrelatedwork.Visualizingtheactivationsandfirst-layerweightsLayerActivations.Themoststraight-forwardvisualizationtechniqueistoshowtheactivationsofthenetworkduringthe
3、forwardpass.ForReLUnetworks,theactivationsusuallystartoutlookingrelativelyblobbyanddense,butasthetrainingprogressestheactivationsusuallybecomemoresparseandlocalized.Onedangerouspitfallthatcanbeeasilynoticedwiththisvisualizationisthatsomeactivationmapsmaybeallze
4、roformanydifferentinputs,whichcanindicatedeadfilters,andcanbeasymptomofhighlearningrates.Typical-lookingactivationsonthefirstCONVlayer(left),andthe5thCONVlayer(right)ofatrainedAlexNetlookingatapictureofacat.Everyboxshowsanactivationmapcorrespondingtosomefilter.
5、Noticethattheactivationsaresparse(mostvaluesarezero,inthisvisualizationshowninblack)andmostlylocal.Conv/FCFilters.Thesecondcommonstrategyistovisualizetheweights.TheseareusuallymostinterpretableonthefirstCONVlayerwhichislookingdirectlyattherawpixeldata,butitispo
6、ssibletoalsoshowthefilterweightsdeeperinthenetwork.Theweightsareusefultovisualizebecausewell-trainednetworksusuallydisplayniceandsmoothfilterswithoutanynoisypatterns.Noisypatternscanbeanindicatorofanetworkthathasn'tbeentrainedforlongenough,orpossiblyaverylowreg
7、ularizationstrengththatmayhaveledtooverfitting.Typical-lookingfiltersonthefirstCONVlayer(left),andthe2ndCONVlayer(right)ofatrainedAlexNet.Noticethatthefirst-layerweightsareveryniceandsmooth,indicatingnicelyconvergednetwork.Thecolor/grayscalefeaturesareclustered
8、becausetheAlexNetcontainstwoseparatestreamsofprocessing,andanapparentconsequenceofthisarchitectureisthatonestreamdevelopshigh-frequencygrayscalefeaturesandtheotherlow-freque
此文档下载收益归作者所有