learning to generate chairs with convolutional neural networks

learning to generate chairs with convolutional neural networks

ID:40720157

大小:5.01 MB

页数:13页

时间:2019-08-06

learning to generate chairs with convolutional neural networks_第1页
learning to generate chairs with convolutional neural networks_第2页
learning to generate chairs with convolutional neural networks_第3页
learning to generate chairs with convolutional neural networks_第4页
learning to generate chairs with convolutional neural networks_第5页
资源描述:

《learning to generate chairs with convolutional neural networks》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、LearningtoGenerateChairswithConvolutionalNeuralNetworksAlexeyDosovitskiyJostTobiasSpringenbergThomasBroxDepartmentofComputerScience,UniversityofFreiburgfdosovits,springj,broxg@cs.uni-freiburg.deAbstractWetrainagenerativeconvolutionalneuralnetworkwhichisabletogenerateimagesofobject

2、sgivenobjecttype,viewpoint,andcolor.Wetrainthenetworkinasu-pervisedmanneronadatasetofrendered3Dchairmod-els.Ourexperimentsshowthatthenetworkdoesnotmerelylearnallimagesbyheart,butratherfindsameaningfulrepresentationofa3Dchairmodelallowingittoassessthesimilarityofdifferentchairs,inte

3、rpolatebetweengivenviewpointstogeneratethemissingones,orinventnewchairstylesbyinterpolatingbetweenchairsfromthetrainingset.Figure1.Interpolationbetweentwochairmodels(original:topWeshowthatthenetworkcanbeusedtofindcorrespon-left,final:bottomleft).Thegenerativeconvolutionalneuralnet-w

4、orklearnsthemanifoldofchairs,allowingittointerpolatebe-dencesbetweendifferentchairsfromthedataset,outper-tweenchairstyles,producingrealisticintermediatestyles.formingexistingapproachesonthistask.canperfectlyapproximateanyfunctiononthetrainingset.1.IntroductionInourcase,anetworkpot

5、entiallycouldjustlearnbyheartallexamplesandprovideperfectreconstructionsofthese,Convolutionalneuralnetworks(CNNs)havebeenshownbutwouldbehaveunpredictablywhenconfrontedwithin-tobeverysuccessfulonavarietyofcomputervisiontasks,putsithasnotseenduringtraining.Weshowthatthisisnotsuchasi

6、mageclassification[17,5,31],detection[9,27]whatishappening,bothbecausethenetworkistoosmalltoandsegmentation[9].Allthesetaskshaveincommonjustrememberallimages,andbecauseweobservegener-thattheycanbeposedasdiscriminativesupervisedlearn-alizationtopreviouslyunseendata.Namely,weshowthat

7、ingproblems,andhencecanbesolvedusingCNNswhichthenetworkiscapableof:1)knowledgetransfer:givenlim-areknowntoperformwellgivenalargeenoughlabeleditednumberofviewpointsofanobject,thenetworkcanusedataset.Typically,atasksolvedbysupervisedCNNsin-theknowledgelearnedfromothersimilarobjectst

8、oinfervolveslearningmappingsfromr

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。