资源描述:
《learning to generate chairs with convolutional neural networks》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、LearningtoGenerateChairswithConvolutionalNeuralNetworksAlexeyDosovitskiyJostTobiasSpringenbergThomasBroxDepartmentofComputerScience,UniversityofFreiburgfdosovits,springj,broxg@cs.uni-freiburg.deAbstractWetrainagenerativeconvolutionalneuralnetworkwhichisabletogenerateimagesofobject
2、sgivenobjecttype,viewpoint,andcolor.Wetrainthenetworkinasu-pervisedmanneronadatasetofrendered3Dchairmod-els.Ourexperimentsshowthatthenetworkdoesnotmerelylearnallimagesbyheart,butratherfindsameaningfulrepresentationofa3Dchairmodelallowingittoassessthesimilarityofdifferentchairs,inte
3、rpolatebetweengivenviewpointstogeneratethemissingones,orinventnewchairstylesbyinterpolatingbetweenchairsfromthetrainingset.Figure1.Interpolationbetweentwochairmodels(original:topWeshowthatthenetworkcanbeusedtofindcorrespon-left,final:bottomleft).Thegenerativeconvolutionalneuralnet-w
4、orklearnsthemanifoldofchairs,allowingittointerpolatebe-dencesbetweendifferentchairsfromthedataset,outper-tweenchairstyles,producingrealisticintermediatestyles.formingexistingapproachesonthistask.canperfectlyapproximateanyfunctiononthetrainingset.1.IntroductionInourcase,anetworkpot
5、entiallycouldjustlearnbyheartallexamplesandprovideperfectreconstructionsofthese,Convolutionalneuralnetworks(CNNs)havebeenshownbutwouldbehaveunpredictablywhenconfrontedwithin-tobeverysuccessfulonavarietyofcomputervisiontasks,putsithasnotseenduringtraining.Weshowthatthisisnotsuchasi
6、mageclassification[17,5,31],detection[9,27]whatishappening,bothbecausethenetworkistoosmalltoandsegmentation[9].Allthesetaskshaveincommonjustrememberallimages,andbecauseweobservegener-thattheycanbeposedasdiscriminativesupervisedlearn-alizationtopreviouslyunseendata.Namely,weshowthat
7、ingproblems,andhencecanbesolvedusingCNNswhichthenetworkiscapableof:1)knowledgetransfer:givenlim-areknowntoperformwellgivenalargeenoughlabeleditednumberofviewpointsofanobject,thenetworkcanusedataset.Typically,atasksolvedbysupervisedCNNsin-theknowledgelearnedfromothersimilarobjectst
8、oinfervolveslearningmappingsfromr