Recent Advances in Convolutional Neural Networks

Recent Advances in Convolutional Neural Networks

ID:40724431

大小:498.10 KB

页数:16页

时间:2019-08-06

Recent Advances in Convolutional Neural Networks_第1页
Recent Advances in Convolutional Neural Networks_第2页
Recent Advances in Convolutional Neural Networks_第3页
Recent Advances in Convolutional Neural Networks_第4页
Recent Advances in Convolutional Neural Networks_第5页
资源描述:

《Recent Advances in Convolutional Neural Networks》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、1RecentAdvancesinConvolutionalNeuralNetworksJiuxiangGu∗,ZhenhuaWang∗,JasonKuen,LianyangMa,AmirShahroudy,BingShuai,TingLiu,XingxingWang,andGangWang,Member,IEEEAbstract—Inthelastfewyears,deeplearninghasledtoverythem,fourrepresentativeworksareZFNet[7],VGGNet[8],goodperformanceonavarietyofproble

2、ms,suchasvisualGoogleNet[9]andResNet[10].Fromtheevolutionoftherecognition,speechrecognitionandnaturallanguageprocessing.architectures,atypicaltrendisthatthenetworksaregettingAmongdifferenttypesofdeepneuralnetworks,convolutionaldeeper,e.g.,ResNet,whichwonthechampionofILSVRCneuralnetworkshaveb

3、eenmostextensivelystudied.Duetothelackoftrainingdataandcomputingpowerinearlydays,itis2015,isabout20timesdeeperthanAlexNetand8timeshardtotrainalargehigh-capacityconvolutionalneuralnetworkdeeperthanVGGNet.Byincreasingdepth,thenetworkcanwithoutoverfitting.Aftertherapidgrowthintheamountofthebette

4、rapproximatethetargetfunctionwithincreasednon-annotateddataandtherecentimprovementsinthestrengthsoflinearityandgetbetterfeaturerepresentations.However,itgraphicsprocessorunits(GPUs),theresearchonconvolutionalalsoincreasesthecomplexityofthenetwork,whichmakesneuralnetworkshasbeenemergedswiftly

5、andachievedstate-of-the-artresultsonvarioustasks.Inthispaper,weprovideabroadthenetworkbemoredifficulttooptimizeandeasiertogetsurveyoftherecentadvancesinconvolutionalneuralnetworks.overfitting.Alongthisway,variousmethodsareproposedtoBesides,wealsointroducesomeapplicationsofconvolutionaldealwith

6、theseproblemsinvariousaspects.Inthispaper,weneuralnetworksincomputervision.trytogiveacomprehensivereviewofrecentadvancesandIndexTerms—ConvolutionalNeuralNetwork,Deeplearning.givesomethoroughdiscussions.Inthefollowingsections,weidentifybroadcategoriesofworksrelatedtoCNN.Wefirstgiveanoverviewof

7、thebasicI.INTRODUCTIONcomponentsofCNNinSectionII.Then,weintroducesomeONVOLUTIONALNeuralNetwork(CNN)isawell-recentimprovementsondifferentaspectsofCNNincludingCknowndeeplearningarchitectureinspiredbythenaturalconvolutionallayer,poolinglayer,activatio

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。