Convolutional Neural Networks at Constrained Time Cost

Convolutional Neural Networks at Constrained Time Cost

ID:40711979

大小:377.06 KB

页数:8页

时间:2019-08-06

Convolutional Neural Networks at Constrained Time Cost_第1页
Convolutional Neural Networks at Constrained Time Cost_第2页
Convolutional Neural Networks at Constrained Time Cost_第3页
Convolutional Neural Networks at Constrained Time Cost_第4页
Convolutional Neural Networks at Constrained Time Cost_第5页
资源描述:

《Convolutional Neural Networks at Constrained Time Cost》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、ConvolutionalNeuralNetworksatConstrainedTimeCostKaimingHeJianSunMicrosoftResearchfkahe,jiansung@microsoft.comAbstractcommercialsearchengineneedstoresponsetoarequestinreal-time;acloudserviceisrequiredtohandlethousandsThoughrecentadvancedconvolutionalneuralnetworksofu

2、ser-submittedimagespersecond;evenforoff-linepro-(CNNs)havebeenimprovingtheimagerecognitionac-cesseslikeweb-scaleimageindexing,thesystemneedstocuracy,themodelsaregettingmorecomplexandtime-handletensofbillionsofimagesinafewdays.Increas-consuming.Forreal-worldapplicati

3、onsinindustrialandingthecomputationalpowerofthehardwarecanpartiallycommercialscenarios,engineersanddevelopersareoftenrelieftheseproblems,butwilltakeveryexpensivecommer-facedwiththerequirementofconstrainedtimebudget.Incialcost.Furthermore,onsmartphonesorportabledevic

4、es,thispaper,weinvestigatetheaccuracyofCNNsundercon-thelowcomputationalpower(CPUsorlow-endGPUs)lim-strainedtimecost.Underthisconstraint,thedesignsoftheitsthespeedofthereal-worldrecognitionapplications.Sonetworkarchitecturesshouldexhibitastrade-offsamonginindustriala

5、ndcommercialscenarios,engineersandde-thefactorslikedepth,numbersoffilters,filtersizes,etc.velopersareoftenfacedwiththerequirementofconstrainedWithaseriesofcontrolledcomparisons,weprogressivelytimebudget.modifyabaselinemodelwhilepreservingitstimecomplex-Besidesthetest-

6、timedemands,theoff-linetrainingpro-ity.Thisisalsohelpfulforunderstandingtheimportanceofcedurecanalsobeconstrainedbyaffordabletimecost.Thethefactorsinnetworkdesigns.Wepresentanarchitecturerecentmodels[1,9,22,23]takeahigh-endGPUormulti-thatachievesverycompetitiveaccur

7、acyintheImageNetpleGPUs/clustersoneweekorseveralweekstotrain,whichdataset(11.8%top-5error,10-viewtest),yetis20%fastercansometimesbetoodemandingfortherapidlychangingthan“AlexNet”[14](16.0%top-5error,10-viewtest).industry.Moreover,evenifthepurposeispurelyforpush-ingth

8、elimitsofaccuracy(likefortheImageNetcompe-tition[20]),themaximumtolerabletrainingtimeisstilla1.Introductionmajorbottleneckforexperimentalr

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。