Learning to Compare Image Patches via Convolutional Neural Networks

Learning to Compare Image Patches via Convolutional Neural Networks

ID:40720132

大小:1.08 MB

页数:9页

时间:2019-08-06

Learning to Compare Image Patches via Convolutional Neural Networks_第1页
Learning to Compare Image Patches via Convolutional Neural Networks_第2页
Learning to Compare Image Patches via Convolutional Neural Networks_第3页
Learning to Compare Image Patches via Convolutional Neural Networks_第4页
Learning to Compare Image Patches via Convolutional Neural Networks_第5页
资源描述:

《Learning to Compare Image Patches via Convolutional Neural Networks》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、LearningtoCompareImagePatchesviaConvolutionalNeuralNetworksSergeyZagoruykoNikosKomodakisUniversiteParisEst,EcoledesPontsParisTechUniversiteParisEst,EcoledesPontsParisTechsergey.zagoruyko@imagine.enpc.frnikos.komodakis@enpc.frAbstractsimilarityInthispaperweshowhowtolearndirectlyfromimagedata(i.e.

2、,withoutresortingtomanually-designedfeatures)decisionnetworkageneralsimilarityfunctionforcomparingimagepatches,whichisataskoffundamentalimportanceformanycom-ConvNetputervisionproblems.Toencodesuchafunction,weoptforaCNN-basedmodelthatistrainedtoaccountforawidevarietyofchangesinimageappearance.Tot

3、hatend,weexploreandstudymultipleneuralnetworkarchitectures,whicharespecificallyadaptedtothistask.Weshowthatsuchanapproachcansignificantlyoutperformthestate-of-patch1patch2the-artonseveralproblemsandbenchmarkdatasets.Figure1.Ourgoalistolearnageneralsimilarityfunctionforim-agepatches.Toencodesuchafu

4、nction,herewemakeuseofand1.Introductionexploreconvolutionalneuralnetworkarchitectures.Comparingpatchesacrossimagesisprobablyoneofthesoftware)largedatasetsthatcontainpatchcorrespondencesmostfundamentaltasksincomputervisionandimageanal-betweenimages[22].Thisbegsthefollowingquestion:canysis.Itisoft

5、enusedasasubroutinethatplaysanimportantwemakeproperuseofsuchdatasetstoautomaticallylearnroleinawidevarietyofvisiontasks.Thesecanrangefromasimilarityfunctionforimagepatches?low-leveltaskssuchasstructurefrommotion,widebaselineThegoalofthispaperistoaffirmativelyaddressthematching,buildingpanoramas,a

6、ndimagesuper-resolution,abovequestion.Ouraimisthustobeabletogenerateauptohigher-leveltaskssuchasobjectrecognition,imagepatchsimilarityfunctionfromscratch,i.e.,withoutattempt-retrieval,andclassificationofobjectcategories,tomentioningtouseanymanuallydesignedfeaturesbutinsteaddi-afewcharacteristicex

7、amples.rectlylearnthisfunctionfromannotatedpairsofrawimageOfcourse,theproblemofdecidingiftwopatchescorre-patches.Tothatend,inspiredalsobytherecentadvancesinspondtoeachotherornotisquitechallengingasthereexistneuralarchitectur

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。