资源描述:
《Robust Tracking via Convolutional Networks without Learning_20151014082723》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、1RobustTrackingviaConvolutionalNetworkswithoutLearningKaihuaZhang,QingshanLiu,YiWu,andMing-HsuanYangAbstractDeepnetworkshavebeensuccessfullyappliedtovisualtrackingbylearningagenericrepresentationofflinefromnumeroustrainingimages.Howevertheofflinetrainin
2、gistime-consumingandthelearnedgenericrepresentationmaybelessdiscriminativefortrackingspecificobjects.Inthispaperwepresentthat,evenwithoutlearning,simpleconvolutionalnetworkscanbepowerfulenoughtodeveloparobustrepresentationforvisualtracking.Inthefirstfra
3、me,werandomlyextractasetofnormalizedpatchesfromthetargetregionasfilters,whichdefineasetoffeaturemapsinthesubsequentframes.Thesemapsmeasuresimilaritiesbetweeneachfilterandtheusefullocalintensitypatternsacrossthetarget,therebyencodingitslocalstructuralinfo
4、rmation.Furthermore,allthemapsformtogetheraglobalrepresentation,whichmaintainstherelativegeometricpositionsofthelocalintensitypatterns,andhencetheinnergeometriclayoutofthetargetisalsowellpreserved.Asimpleandeffectiveonlinestrategyisadoptedtoupdatether
5、epresentation,allowingittorobustlyadapttotargetappearancevariations.Ourconvolutionnetworkshavesurprisinglylightweightstructure,yetperformfavorablyagainstseveralstate-of-the-artmethodsonalargebenchmarkdatasetwith50challengingvideos.IndexTermsVisualtrac
6、king,ConvolutionalNetworks,Deeplearning.arXiv:1501.04505v1[cs.CV]19Jan2015KaihuaZhang,QingshanLiuandYiWuarewithJiangsuKeyLaboratoryofBigDataAnalysisTechnology(B-DAT),NanjingUniversityofInformationScienceandTechnology.E-mail:fcskhzhang,qsliu,ywug@nuist
7、.edu.cn.Ming-HsuanYangiswithElectricalEngineeringandComputerScience,UniversityofCalifornia,Merced,CA,95344.E-mail:mhyang@ucmerced.edu.January20,2015DRAFT2Fig.1:Overviewoftheproposedrepresentation.Inputsamplesarewarpedintoacanonical3232images.Wefirstra
8、ndomlyextractasetofnormalizedlocalpatchesfromthewarpedtargetregioninthefirstframe,andthenusethemasfilterstoconvolveeachnormalizedsampleextractedfromsubsequentframes,resultinginasetoffeaturemaps.Finally,thefeaturemapsarestackedtogeneratethesample