资源描述:
《Robust Tracking via Convolutional Networks without Learning》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、1RobustTrackingviaConvolutionalNetworkswithoutLearningKaihuaZhang,QingshanLiu,YiWu,andMing-HsuanYangAbstractDeepnetworkshavebeensuccessfullyappliedtovisualtrackingbylearningagenericrepresentationofflinefromnumeroustrainingimages.Howevertheofflinetrainingistime-consumingandthelearnedgenericrepresentati
2、onmaybelessdiscriminativefortrackingspecificobjects.Inthispaperwepresentthat,evenwithoutlearning,simpleconvolutionalnetworkscanbepowerfulenoughtodeveloparobustrepresentationforvisualtracking.Inthefirstframe,werandomlyextractasetofnormalizedpatchesfromthetargetregionasfilters,whichdefineasetoffeaturemaps
3、inthesubsequentframes.Thesemapsmeasuresimilaritiesbetweeneachfilterandtheusefullocalintensitypatternsacrossthetarget,therebyencodingitslocalstructuralinformation.Furthermore,allthemapsformtogetheraglobalrepresentation,whichmaintainstherelativegeometricpositionsofthelocalintensitypatterns,andhencethei
4、nnergeometriclayoutofthetargetisalsowellpreserved.Asimpleandeffectiveonlinestrategyisadoptedtoupdatetherepresentation,allowingittorobustlyadapttotargetappearancevariations.Ourconvolutionnetworkshavesurprisinglylightweightstructure,yetperformfavorablyagainstseveralstate-of-the-artmethodsonalargebench
5、markdatasetwith50challengingvideos.IndexTermsVisualtracking,ConvolutionalNetworks,Deeplearning.arXiv:1501.04505v1[cs.CV]19Jan2015KaihuaZhang,QingshanLiuandYiWuarewithJiangsuKeyLaboratoryofBigDataAnalysisTechnology(B-DAT),NanjingUniversityofInformationScienceandTechnology.E-mail:fcskhzhang,qsliu,ywug
6、@nuist.edu.cn.Ming-HsuanYangiswithElectricalEngineeringandComputerScience,UniversityofCalifornia,Merced,CA,95344.E-mail:mhyang@ucmerced.edu.January20,2015DRAFT2Fig.1:Overviewoftheproposedrepresentation.Inputsamplesarewarpedintoacanonical3232images.Wefirstrandomlyextractasetofnormalizedlocalpatchesfr
7、omthewarpedtargetregioninthefirstframe,andthenusethemasfilterstoconvolveeachnormalizedsampleextractedfromsubsequentframes,resultinginasetoffeaturemaps.Finally,thefeaturemapsarestackedtogeneratethesample