Robust Tracking via Convolutional Networks without Learning

Robust Tracking via Convolutional Networks without Learning

ID:40725145

大小:4.01 MB

页数:13页

时间:2019-08-06

Robust Tracking via Convolutional Networks without Learning_第1页
Robust Tracking via Convolutional Networks without Learning_第2页
Robust Tracking via Convolutional Networks without Learning_第3页
Robust Tracking via Convolutional Networks without Learning_第4页
Robust Tracking via Convolutional Networks without Learning_第5页
资源描述:

《Robust Tracking via Convolutional Networks without Learning》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、1RobustTrackingviaConvolutionalNetworkswithoutLearningKaihuaZhang,QingshanLiu,YiWu,andMing-HsuanYangAbstractDeepnetworkshavebeensuccessfullyappliedtovisualtrackingbylearningagenericrepresentationofflinefromnumeroustrainingimages.Howevertheofflinetrainingistime-consumingandthelearnedgenericrepresentati

2、onmaybelessdiscriminativefortrackingspecificobjects.Inthispaperwepresentthat,evenwithoutlearning,simpleconvolutionalnetworkscanbepowerfulenoughtodeveloparobustrepresentationforvisualtracking.Inthefirstframe,werandomlyextractasetofnormalizedpatchesfromthetargetregionasfilters,whichdefineasetoffeaturemaps

3、inthesubsequentframes.Thesemapsmeasuresimilaritiesbetweeneachfilterandtheusefullocalintensitypatternsacrossthetarget,therebyencodingitslocalstructuralinformation.Furthermore,allthemapsformtogetheraglobalrepresentation,whichmaintainstherelativegeometricpositionsofthelocalintensitypatterns,andhencethei

4、nnergeometriclayoutofthetargetisalsowellpreserved.Asimpleandeffectiveonlinestrategyisadoptedtoupdatetherepresentation,allowingittorobustlyadapttotargetappearancevariations.Ourconvolutionnetworkshavesurprisinglylightweightstructure,yetperformfavorablyagainstseveralstate-of-the-artmethodsonalargebench

5、markdatasetwith50challengingvideos.IndexTermsVisualtracking,ConvolutionalNetworks,Deeplearning.arXiv:1501.04505v1[cs.CV]19Jan2015KaihuaZhang,QingshanLiuandYiWuarewithJiangsuKeyLaboratoryofBigDataAnalysisTechnology(B-DAT),NanjingUniversityofInformationScienceandTechnology.E-mail:fcskhzhang,qsliu,ywug

6、@nuist.edu.cn.Ming-HsuanYangiswithElectricalEngineeringandComputerScience,UniversityofCalifornia,Merced,CA,95344.E-mail:mhyang@ucmerced.edu.January20,2015DRAFT2Fig.1:Overviewoftheproposedrepresentation.Inputsamplesarewarpedintoacanonical3232images.Wefirstrandomlyextractasetofnormalizedlocalpatchesfr

7、omthewarpedtargetregioninthefirstframe,andthenusethemasfilterstoconvolveeachnormalizedsampleextractedfromsubsequentframes,resultinginasetoffeaturemaps.Finally,thefeaturemapsarestackedtogeneratethesample

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。