Online learning of robust object detectors during unstable tracking

Online learning of robust object detectors during unstable tracking

ID:39719063

大小:447.93 KB

页数:8页

时间:2019-07-10

Online learning of robust object detectors during unstable tracking_第1页
Online learning of robust object detectors during unstable tracking_第2页
Online learning of robust object detectors during unstable tracking_第3页
Online learning of robust object detectors during unstable tracking_第4页
Online learning of robust object detectors during unstable tracking_第5页
资源描述:

《Online learning of robust object detectors during unstable tracking》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、OnlinelearningofrobustobjectdetectorsduringunstabletrackingZdenekKalalJiriMatasKrystianMikolajczykUniversityofSurreyCzechTechnicalUniversityUniversityofSurreyGuildford,UKPrague,CzechRepublicGuildford,UKz.kalal@surrey.ac.ukmatas@cmp.felk.cvut.czk.mikolajczyk@surrey.ac.ukAbstractdressdire

2、ctlythepost-failurebehaviorandthereforecannotbedirectlyusedinthelong-termtrackingproblem.WereferThisworkinvestigatestheproblemofrobust,long-tothisgroupofalgorithmsasshort-termtrackers.termvisualtrackingofunknownobjectsinunconstrainedClearlythesolutionofthelong-termtrackingproblemenviron

3、ments.Itthereforemustcopewithframe-cuts,requiressomedetectioncapability,tore-detecttheobjectfastcameramovementsandpartial/totalobjectocclu-afteraperiodwhenitisnotinthefieldofvieworaf-sions/dissapearances.Weproposeanewapproach,tertrackingfailure.Tracking-by-detectionmethods[9]orcalledTrac

4、king-Modeling-Detection(TMD)thatcloselymethodsintegratingatrackerandadetector[1,17]addressintegratesadaptivetrackingwithonlinelearningofthetheproblem.However,detectorshavetobedesignedorobject-specificdetector.Startingfromasingleclickinthetrainedbeforetrackingstartsandthuscannotbeusedwhen

5、firstframe,TMDtrackstheselectedobjectbyanadaptivetheobjectofinterestisnotknowninadvance.Thetrain-tracker.Thetrajectoryisobservedbytwoprocesses(grow-ingofthesedetectorseitherrequiresalargehand-labeledingandpruningevent)thatrobustlymodeltheappearancetrainingsets[20],generatesthetrainingset

6、bywarpingtheandbuildanobjectdetectoronthefly.Botheventsmakepatches[9]orextractsthetrainingdatausingsomesophis-errors,thestabilityofthesystemisachievedbytheircan-ticatedmethod[16,18,19].Allthesemethodsstrictlysep-celation.Thelearntdetectorenablesre-initializationofaratethetrainingandtesti

7、ngphasewhichmeansthatap-thetrackerwheneverpreviouslyobservedappearancere-pearancevariabilitynotrepresentedinthetrainingsetneveroccurs.Weshowthereal-timelearningandclassificationisbecomespartofthemodel.achievablewithrandomforests.TheperformanceandtheTheappearancechangeproblemisad

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。