Image super-resolution representation via image patches based on extreme learning machine

Image super-resolution representation via image patches based on extreme learning machine

ID:40899595

大小:865.95 KB

页数:6页

时间:2019-08-10

Image super-resolution representation via image patches based on extreme learning machine_第1页
Image super-resolution representation via image patches based on extreme learning machine_第2页
Image super-resolution representation via image patches based on extreme learning machine_第3页
Image super-resolution representation via image patches based on extreme learning machine_第4页
Image super-resolution representation via image patches based on extreme learning machine_第5页
资源描述:

《Image super-resolution representation via image patches based on extreme learning machine》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、InternationalConferenceonSoftwareEngineeringandComputerScience(ICSECS2013)Imagesuper-resolutionrepresentationviaimagepatchesbasedonextremelearningmachineQiuxiZhu,XiaodongLi,WeijieMaoDepartmentofControlScienceandEngineeringZhejiangUniversityHangzhou,Chinae-

2、mail:zhuqiuxi0743@126.comAbstract—Inthispaper,aimedattheextensivelyexistingproblemandmakeitpossibletoincreasetheresolutionofLRimagesbyofslownessinmainstreamimagesuper-resolutions,anefficientmorethan3or4times[2].However,mostoftheappliedwell-approachispropos

3、edforsuper-resolutionbasedontheextremedevelopedlearningalgorithmssuchasbackpropagation(BP)learningmachine(ELM)forsingle-hiddenlayerfeedforwardandsupportvectormachine(SVM),arestilltrappedbytheneuralnetworks(SLFNs).Featuresandissues(e.g.parameterbottleneckof

4、slownesscausedbyiterativesolutionsandthusselections)intheapplicationofELMarediscussed,onthebasisfailtobeacceptedinfieldsthatlaystressonthespeedofofwhichageneralframeworkforavarietyofsuper-resolutionimaging[2].problemsisproposed,andcorrespondingexperimentsa

5、reInthispaper,extremelearningmachine(ELM)[10]forconducted.Itisshownintheresultsthattheproposedapproachsinglehidden-layerfeedforwardneuralnetworks(SLFNs)iscanachieverelativelygoodqualityandmuchfasterspeedappliedtoimagesuper-resolutioninordertoprovidelearnin

6、g-comparedtotraditionalreconstruction-basedsuper-resolutions,basedsuper-resolutionswithafastandefficientlearningthereforetheeffectivenessofthismethodisdemonstrated.algorithm.TheproposedmethodmainlyfocusesonprovidingKeywords-ELM;neuralnetwork;imageprocessin

7、g;super-thesuper-resolutionproblemwithageneralframeworkresolution(includingtheconfigurationsoftheneuralnetwork)thatcanbeappliedtodifferenttypesofsuper-resolutionproblemswithfewmodificationsneededintransplantations.BytrainingtheI.INTRODUCTIONSLFNwithrelativ

8、etrainingimages,super-resolutionimagesImagesuper-resolutionisasignificantbranchinimagecanberebuiltbytheintegrationofnetworkoutputs.fusion,whichrebuildshigh-resolution(HR)imagesbyutilizingTheremainingpartsofth

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。