欢迎来到天天文库
浏览记录
ID:40899595
大小:865.95 KB
页数:6页
时间:2019-08-10
《Image super-resolution representation via image patches based on extreme learning machine》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、InternationalConferenceonSoftwareEngineeringandComputerScience(ICSECS2013)Imagesuper-resolutionrepresentationviaimagepatchesbasedonextremelearningmachineQiuxiZhu,XiaodongLi,WeijieMaoDepartmentofControlScienceandEngineeringZhejiangUniversityHangzhou,Chinae-
2、mail:zhuqiuxi0743@126.comAbstract—Inthispaper,aimedattheextensivelyexistingproblemandmakeitpossibletoincreasetheresolutionofLRimagesbyofslownessinmainstreamimagesuper-resolutions,anefficientmorethan3or4times[2].However,mostoftheappliedwell-approachispropos
3、edforsuper-resolutionbasedontheextremedevelopedlearningalgorithmssuchasbackpropagation(BP)learningmachine(ELM)forsingle-hiddenlayerfeedforwardandsupportvectormachine(SVM),arestilltrappedbytheneuralnetworks(SLFNs).Featuresandissues(e.g.parameterbottleneckof
4、slownesscausedbyiterativesolutionsandthusselections)intheapplicationofELMarediscussed,onthebasisfailtobeacceptedinfieldsthatlaystressonthespeedofofwhichageneralframeworkforavarietyofsuper-resolutionimaging[2].problemsisproposed,andcorrespondingexperimentsa
5、reInthispaper,extremelearningmachine(ELM)[10]forconducted.Itisshownintheresultsthattheproposedapproachsinglehidden-layerfeedforwardneuralnetworks(SLFNs)iscanachieverelativelygoodqualityandmuchfasterspeedappliedtoimagesuper-resolutioninordertoprovidelearnin
6、g-comparedtotraditionalreconstruction-basedsuper-resolutions,basedsuper-resolutionswithafastandefficientlearningthereforetheeffectivenessofthismethodisdemonstrated.algorithm.TheproposedmethodmainlyfocusesonprovidingKeywords-ELM;neuralnetwork;imageprocessin
7、g;super-thesuper-resolutionproblemwithageneralframeworkresolution(includingtheconfigurationsoftheneuralnetwork)thatcanbeappliedtodifferenttypesofsuper-resolutionproblemswithfewmodificationsneededintransplantations.BytrainingtheI.INTRODUCTIONSLFNwithrelativ
8、etrainingimages,super-resolutionimagesImagesuper-resolutionisasignificantbranchinimagecanberebuiltbytheintegrationofnetworkoutputs.fusion,whichrebuildshigh-resolution(HR)imagesbyutilizingTheremainingpartsofth
此文档下载收益归作者所有