Deformable Part Models are Convolutional Neural Networks

Deformable Part Models are Convolutional Neural Networks

ID:40714217

大小:813.21 KB

页数:10页

时间:2019-08-06

Deformable Part Models are Convolutional Neural Networks_第1页
Deformable Part Models are Convolutional Neural Networks_第2页
Deformable Part Models are Convolutional Neural Networks_第3页
Deformable Part Models are Convolutional Neural Networks_第4页
Deformable Part Models are Convolutional Neural Networks_第5页
资源描述:

《Deformable Part Models are Convolutional Neural Networks》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、DeformablePartModelsareConvolutionalNeuralNetworksRossGirshick1ForrestIandola2TrevorDarrell2JitendraMalik21MicrosoftResearch2UCBerkeleyrbg@microsoft.comfforresti,trevor,malikg@eecs.berkeley.eduAbstractCNN.Inotherwords,deformablepartmodelsareconvo-lutionalneuralnetworks.Ourconstructionrelieso

2、nanewDeformablepartmodels(DPMs)andconvolutionalneu-networklayer,distancetransformpooling,whichgeneral-ralnetworks(CNNs)aretwowidelyusedtoolsforvi-izesmaxpooling.sualrecognition.Theyaretypicallyviewedasdistinctap-DPMstypicallyoperateonascale-spacepyramidofgra-proaches:DPMsaregraphicalmodels(M

3、arkovrandomdientorientationfeaturemaps(HOG[5]).Butwenowfields),whileCNNsare“black-box”non-linearclassifiers.knowthatforobjectdetectionthisfeaturerepresentationisInthispaper,weshowthataDPMcanbeformulatedasasuboptimalcomparedtofeaturescomputedbydeepcon-CNN,thusprovidingasynthesisofthetwoideas.Ou

4、rcon-volutionalnetworks[17].Asasecondinnovation,were-structioninvolvesunrollingtheDPMinferencealgorithmplaceHOGwithfeatureslearnedbyafully-convolutionalandmappingeachsteptoanequivalentCNNlayer.Fromnetwork.This“front-end”networkgeneratesapyramidofthisperspective,itisnaturaltoreplacethestandar

5、dim-deepfeatures,analogoustoaHOGfeaturepyramid.WeagefeaturesusedinDPMswithalearnedfeatureextractor.callthefullmodelaDeepPyramidDPM.WecalltheresultingmodelaDeepPyramidDPMandex-WeexperimentallyvalidateDeepPyramidDPMsbyperimentallyvalidateitonPASCALVOCobjectdetection.measuringobjectdetectionper

6、formanceonPASCALVOCWefindthatDeepPyramidDPMssignificantlyoutperform[9].SincetraditionalDPMshavebeentunedforHOGfea-DPMsbasedonhistogramsoforientedgradientsfeaturesturesovermanyyears,wefirstanalyzethedifferencesbe-(HOG)andslightlyoutperformsacomparableversionoftweenHOGfeaturepyramidsanddeepfeatur

7、epyramids.therecentlyintroducedR-CNNdetectionsystem,whilerun-WethenselectagoodmodelstructureandtrainaDeep-ningsignificantlyfaster.PyramidDPMthatsignificantlyoutperformsthebestHOG-basedDPMs.Whilewedon’texpectourapproachtoout-performafine-tunedR-CNNdete

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。