资源描述:
《2015_CVPR_Deepid-net Deformable deep convolutional neural networks for object detection》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、DeepID-Net:DeformableDeepConvolutionalNeuralNetworksforObjectDetectionWanliOuyang,XiaogangWang,XingyuZeng,ShiQiu,PingLuo,YonglongTian,HongshengLi,ShuoYang,ZheWang,Chen-ChangeLoy,XiaoouTangTheChineseUniversityofHongKongwlouyang,xgwang@ee.cuhk.edu.hkAbstractPretrain
2、edonobject-levelannoationPretrainedonimage-levelannotationInthispaper,weproposedeformabledeepconvolutionalImageneuralnetworksforgenericobjectdetection.Thisnewdeeplearningobjectdetectionframeworkhasinnovationsinmultipleaspects.Intheproposednewdeeparchitecture,Visua
3、lizedmodelanewdeformationconstrainedpooling(def-pooling)layermodelsthedeformationofobjectpartswithgeometriccon-(a)straintandpenalty.Anewpre-trainingstrategyisproposedDeepmodelDeformablepatternExamplestolearnfeaturerepresentationsmoresuitablefortheobject...detectio
4、ntaskandwithgoodgeneralizationcapability.Bychangingthenetstructures,trainingstrategies,addingandremovingsomekeycomponentsinthedetectionpipeline,Patternasetofmodelswithlargediversityareobtained,whichDeformationsignificantlyimprovestheeffectivenessofmodelaverag-...pe
5、naltying.TheproposedapproachimprovesthemeanaveragedprecisionobtainedbyRCNN[14],whichwasthestate-of-Patternthe-art,from31%to50.3%ontheILSVRC2014detectiontestset.ItalsooutperformsthewinnerofILSVRC2014,DeformationpenaltyGoogLeNet,by6.1%.Detailedcomponent-wiseanalysis
6、(b)isalsoprovidedthroughextensiveexperimentalevaluation,Figure1.Themotivationofthispaperinnewpretrainingschemewhichprovideaglobalviewforpeopletounderstandthe(a)andjointlylearningfeaturerepresentationanddeformableob-deeplearningobjectdetectionpipeline.jectpartsshar
7、edbymultipleobjectclassesatdifferentsemanticlevels(b).In(a),amodelpretrainedonimage-levelannotationismorerobusttosizeandlocationchangewhileamodelpretrainedonobject-levelannotationisbetterinrepresentingobjectswith1.Introductiontightboundingboxes.In(b),whenipodrotat
8、es,itscircularpatternmoveshorizontallyatthebottomoftheboundingbox.Therefore,Objectdetectionisoneofthefundamentalchallengesinthecircularpatternshavesmall