Fusing LIDAR and Images for Pedestrian Detection using Convolutional Neural Networks

Fusing LIDAR and Images for Pedestrian Detection using Convolutional Neural Networks

ID:40716603

大小:927.33 KB

页数:8页

时间:2019-08-06

Fusing LIDAR and Images for Pedestrian Detection using Convolutional Neural Networks_第1页
Fusing LIDAR and Images for Pedestrian Detection using Convolutional Neural Networks_第2页
Fusing LIDAR and Images for Pedestrian Detection using Convolutional Neural Networks_第3页
Fusing LIDAR and Images for Pedestrian Detection using Convolutional Neural Networks_第4页
Fusing LIDAR and Images for Pedestrian Detection using Convolutional Neural Networks_第5页
资源描述:

《Fusing LIDAR and Images for Pedestrian Detection using Convolutional Neural Networks》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、2016IEEEInternationalConferenceonRoboticsandAutomation(ICRA)Stockholm,Sweden,May16-21,2016FusingLIDARandImagesforPedestrianDetectionusingConvolutionalNeuralNetworks*JoelSchlosser,ChristopherK.Chow,andZsoltKira1Abstract—Inthispaper,weexplorevariousaspect

2、soffusingthisrepresentationissuccessfulevenonup-sampledLIDARLIDARandcolorimageryforpedestriandetectioninthedata.contextofconvolutionalneuralnetworks(CNNs),whichhaveWethendesignandtrainseveralCNNsbasedon[11]recentlybecomestate-of-artformanyvisionproblems

3、.WethatoperateonbothRGBandHHAchannels,distinguishedincorporateLIDARbyup-samplingthepointcloudtoadensedepthmapandthenextractingthreefeaturesrepresentingbythepointatwhichtheRGBandHHAdatachannelsdifferentaspectsofthe3Dscene.Wethenusethosefeaturesasarefused

4、,andanalyzetheresultstoempiricallydetermineextraimagechannels.Specifically,weleveragerecentworkonthemodelthatachievesthebestresults.WeperformthisHHA[9](horizontaldisparity,heightaboveground,andangle)evaluationonatraining/validationsplitoftheKITTIurbanrep

5、resentations,adaptingthecodetoworkonup-sampledpedestriandetection,whichhasavailableLIDARdata.UsingLIDARratherthanMicrosoftKinectdepthmaps.Weshow,forthefirsttime,thatsucharepresentationisapplicablethisdata,wecontributeseveralfindings,namelythat:1)toup-samp

6、ledLIDARdata,despiteitssparsity.SinceCNNsusingHHAfeaturesandRGBimagesperformsbetterthanlearnadeephierarchyoffeaturerepresentations,wethenRGB-only,evenwithoutanyfine-tuningusinglargeRGBexplorethequestion:Atwhatlevelofrepresentationshouldwewebdata,2)fusing

7、RGBandHHAachievesthestrongestfusethisadditionalinformationwiththeoriginalRGBimageresultsifdonelate,butunderaparameterorcomputationalchannels?WeusetheKITTIpedestriandetectiondatasetforourexploration.Wefirstreplicatethefindingthatregion-CNNsbudgetisbestdone

8、attheearlytomiddlelayersofthe(R-CNNs)[8]canoutperformtheoriginalproposalmechanismhierarchicalrepresentation(representingmid-levelfeaturesusingonlyRGBimages,butonlyiffine-tuningisemployed.ratherthanloworhigh-levelones)withonlysmall

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。