Compact Deep Convolutional Neural Networks With Coarse Pruning

Compact Deep Convolutional Neural Networks With Coarse Pruning

ID:40710703

大小:309.19 KB

页数:10页

时间:2019-08-06

Compact Deep Convolutional Neural Networks With Coarse Pruning _第1页
Compact Deep Convolutional Neural Networks With Coarse Pruning _第2页
Compact Deep Convolutional Neural Networks With Coarse Pruning _第3页
Compact Deep Convolutional Neural Networks With Coarse Pruning _第4页
Compact Deep Convolutional Neural Networks With Coarse Pruning _第5页
资源描述:

《Compact Deep Convolutional Neural Networks With Coarse Pruning 》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、UnderreviewasaconferencepaperatICLR2017COMPACTDEEPCONVOLUTIONALNEURALNETWORKSWITHCOARSEPRUNINGSajidAnwar,WonyongSungDepartmentofElectricalEngineeringandComputerScienceSeoulNationalUniversityGwanak-Gu,08826,RepublicofKoreasajid@dsp.snu.ac.kr,wysung@snu.ac.krABS

2、TRACTThelearningcapabilityofaneuralnetworkimproveswithincreasingdepthathighercomputationalcosts.Widerlayerswithdensekernelconnectivitypatternsfurhterincreasethiscostandmayhinderreal-timeinference.Weproposefeaturemapandkernellevelpruningforreducingthecomputatio

3、nalcomplexityofadeepconvolutionalneuralnetwork.Pruningfeaturemapsreducesthewidthofalayerandhencedoesnotneedanysparserepresentation.Further,kernelpruningcon-vertsthedenseconnectivitypatternintoasparseone.Duetocoarsenature,thesepruninggranularitiescanbeexploited

4、byGPUsandVLSIbasedimplementations.Weproposeasimpleandgenericstrategytochoosetheleastadversarialpruningmasksforbothgranularities.Theprunednetworksareretrainedwhichcompen-satesthelossinaccuracy.Weobtainthebestpruningratioswhenwepruneanetworkwithbothgranularities

5、.ExperimentswiththeCIFAR-10datasetshowthatmorethan85%sparsitycanbeinducedintheconvolutionlayerswithlessthan1%increaseinthemissclassificationrateofthebaselinenetwork.1INTRODUCTIONDeepandwiderneuralnetworkshavethecapacitytolearnacomplexunknownfunctionfromthetrain

6、ingdata.ThenetworkreportedinDeanetal.(2012)has1.7BillionparametersandistrainedontensofthousandsofCPUcores.SimilarlySimonyan&Zisserman(2014)hasemployed16-18layersandachievedexcellentclassificationresultsontheImageNetdataset.Thehighcomputationallycomplexityofwide

7、anddeepnetworksisamajorobstacleinportingthebenefitsofdeeplearningtoresourcelimiteddevices.Therefore,manyresearchershaveproposedideastoacceleratedeepnetworksforreal-timeinferenceYuetal.(2012);Hanetal.(2015b;a);Mathieuetal.(2013);Anwaretal.(2015b).Networkpruningi

8、sonepromisingtechiquethatfirstlearnsafunctionwithasuficientlylargesizedarXiv:1610.09639v1[cs.LG]30Oct2016networkfollowedbyremovinglessimportantconnectionsYuetal.(2012);Hanetal.(2015b

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。