Deep Convolutional Neural Networks for Facial Expression Recognition

Deep Convolutional Neural Networks for Facial Expression Recognition

ID:40714121

大小:585.64 KB

页数:5页

时间:2019-08-06

Deep Convolutional Neural Networks for Facial Expression Recognition_第1页
Deep Convolutional Neural Networks for Facial Expression Recognition_第2页
Deep Convolutional Neural Networks for Facial Expression Recognition_第3页
Deep Convolutional Neural Networks for Facial Expression Recognition_第4页
Deep Convolutional Neural Networks for Facial Expression Recognition_第5页
资源描述:

《Deep Convolutional Neural Networks for Facial Expression Recognition》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、DeepConvolutionalNeuralNetworksforFacialExpressionRecognitionAyşegülUçarDepartmentofMechatronicEngineeringFıratUniversityElazığ,Turkeyagulucar@firat.edu.trAbstract—Facialexpressionrecognitionisaveryactivemethodstosetfacialinvariancepoints,whichprovidesafewresearchtopicduetoitspotentialapplica

2、tionsinthemanyfieldsdifficultatreallifeapplications.suchashuman-robotinteraction,human-machineinterfaces,Appearance-basedmethodsusethefeaturesextracteddrivingsafety,andhealth-care.Despiteofthesignificantdirectlyfromtheimagesbutdoesnotincludeaninformationimprovements,facialexpressionrecognitio

3、nisstillachallengingrelatingtothefacialpoints.TherearealotofAppearance-problemthatwaitformoreandmoreaccuratealgorithms.Thisbasedmethods.ThemostimportantonesareLocalBinaryarticlepresentsanewmodelthatiscapableofrecognizingfacialexpressionbyusingdeepConvolutionalNeuralNetwork(CNN).Pattern(LBP)[1

4、8],GaborWavelets[19],LocalGaborBinaryTheCNNmodelisgeneratedbyusingCaffeinDigitsPatterns(LGBP)[20-21],ScaleInvariantFeatureTransformenvironment.Moreover,itistrainedandtestedonNVIDIA(SIFT)[22],HistogramofOrientedGradient(HOG)[23],andTegraTX1embeddeddevelopmentplatformincludinga250CurveletTransf

5、orm[23].FacialexpressionsmakethecertainGraphicsProcessingUnit(GPU)CUDAcoresandQuadcoreregionsoffacechange,whichcausesinterestinjusttheARMCortexA57processor.Theproposedmodelisappliedtospecialregions.In[24-26],thesalientfeatureswereextractedaddressthefacialexpressionproblemonthepubliclyavailabl

6、efromlocalpatches.twoexpressiondatabases,theJAFFEdatabaseandtheCohn-FacialexpressionrecognitionproblemconstructsaKanadedatabase.classificationalgorithmtoseparateemotionsintotheclassesKeywords—ConvolutionalNeuralNetworks;DeepLearning,suchassadness,surprise,anger,happiness,fear,disgust,andEmbed

7、dedDeveloplementPlatformwithGPU.neutralitybyusingtheextractedfeatures.Intheliterature,itwasobtainedpromisingresultsbyusingArtificialNeuralI.INTRODUCTIONNetworks(ANNs)[27],SupportVectorMachines,(SVMs)[28],SphericalClassifiers[29],HiddenMarkovM

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。