Traffic Sign Recognition With Hinge Loss Trained Convolutional Neural Networks

Traffic Sign Recognition With Hinge Loss Trained Convolutional Neural Networks

ID:40728992

大小:1.35 MB

页数:10页

时间:2019-08-06

Traffic Sign Recognition With Hinge Loss Trained Convolutional Neural Networks_第1页
Traffic Sign Recognition With Hinge Loss Trained Convolutional Neural Networks_第2页
Traffic Sign Recognition With Hinge Loss Trained Convolutional Neural Networks_第3页
Traffic Sign Recognition With Hinge Loss Trained Convolutional Neural Networks_第4页
Traffic Sign Recognition With Hinge Loss Trained Convolutional Neural Networks_第5页
资源描述:

《Traffic Sign Recognition With Hinge Loss Trained Convolutional Neural Networks》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、IEEETRANSACTIONSONINTELLIGENTTRANSPORTATIONSYSTEMS,VOL.15,NO.5,OCTOBER20141991TrafficSignRecognitionWithHingeLossTrainedConvolutionalNeuralNetworksJunqiJin,KunFu,andChangshuiZhang,Member,IEEEAbstractTrafficsignrecognition(TSR)isanimportantandchallengingtaskforintelligenttransportationsy

2、stems.Wede-scribethedetailsofourmodelsarchitectureforTSRandsug-gestahingelossstochasticgradientdescent(HLSGD)methodtotrainconvolutionalneuralnetworks(CNNs).OurCNNconsistsofthreestages(70110180)with1162284trainableparameters.TheHLSGDisevaluatedontheGermanTrafficSignRecognitionBenchmark,w

3、hichoffersafasterandmorestableconvergenceandastate-of-the-artrecognitionrateof99.65%.WewriteagraphicsprocessingunitpackagetotrainseveralCNNsandes-tablishthefinalclassifierinanensembleway.IndexTermsConvolutionalneuralnetworks(CNNs),hingeFig.1.Structureofalayerand3-Dimageofamap.loss,stocha

4、sticgradientdescent(SGD),trafficsignrecognition(TSR).Themodelaccomplishesfeatureextractingandclassifyingasawhole,andbothbuildingblocksarelearnedinasupervisedI.INTRODUCTIONprocedure.ThelearnedfeaturesareusuallyveryrobusttotheRAFFICsignsplayveryimportantrolesforbothtrans-specifictask.Inrec

5、entyears,theCNNhasachievedseveralTportationefficiencyandsafety.Anautomatictrafficsignstate-of-the-artperformancessuchasintheImageNetChal-recognition(TSR)systemishelpfulforassistingdriversandislenge[13]andthe2011InternationalJointConferenceonessentialforautonomouscars.Theresearcharoundthi

6、sissueNeuralNetworks(IJCNN)competition[14],[15].haslongbeenpopular[1],butthetaskischallenging.SomeTheCNNusuallyhasmillionsofparameters,whichismorepopularmethodsincludeBayesianclassifiers[2],boosting[3],difficulttotrainthanflatmodels.Stochasticgradientdescenttreeclassifiers[4],andsupportvec

7、tormachines(SVMs)[5].(SGD)ispreferredfortrainingtheCNN,butaccordingtotheThesemethods,fromtoday’spointofview,areconsideredreportsbySermanetandLeCun[16],Ciresanetal.[14],andusinghand-codedfeaturessuchasacircledetectorin[2],aLeCunetal.[12],SGDtrainingalsorequiresagooddealofHaarwavelet[6

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。