[ICPR 2012 Andrew] End-to-End Text Recognition with Convolutional Neural Networks

[ICPR 2012 Andrew] End-to-End Text Recognition with Convolutional Neural Networks

ID:40702364

大小:638.65 KB

页数:5页

时间:2019-08-06

[ICPR 2012 Andrew] End-to-End Text Recognition with Convolutional Neural Networks_第1页
[ICPR 2012 Andrew] End-to-End Text Recognition with Convolutional Neural Networks_第2页
[ICPR 2012 Andrew] End-to-End Text Recognition with Convolutional Neural Networks_第3页
[ICPR 2012 Andrew] End-to-End Text Recognition with Convolutional Neural Networks_第4页
[ICPR 2012 Andrew] End-to-End Text Recognition with Convolutional Neural Networks_第5页
资源描述:

《[ICPR 2012 Andrew] End-to-End Text Recognition with Convolutional Neural Networks》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、End-to-EndTextRecognitionwithConvolutionalNeuralNetworksTaoWang∗DavidJ.Wu∗AdamCoatesAndrewY.NgStanfordUniversity,353SerraMall,Stanford,CA94305{twangcat,dwu4,acoates,ang}@cs.stanford.eduAbstract32×3225×25×965×5×964×4×2562×2×256Fullend-to-endtextrecogn

2、itioninnaturalimages[Non-Text]isachallengingproblemthathasreceivedmuchatten-tionrecently.Traditionalsystemsinthisareahavere-[Text]liedonelaboratemodelsincorporatingcarefullyhand-ConvolutionConvolutionClassificationengineeredfeaturesorlargeamountsofpr

3、iorknowl-AveragePoolingAveragePoolingedge.Inthispaper,wetakeadifferentrouteandcom-binetherepresentationalpoweroflarge,multilayerFigure1.CNNusedfortextdetection.neuralnetworkstogetherwithrecentdevelopmentsinunsupervisedfeaturelearning,whichallowsustou

4、searelatedfieldssuchasvisualrecognition[3]andactioncommonframeworktotrainhighly-accuratetextdetec-recognition[7].Inthecaseoftextrecognition,thetorandcharacterrecognizermodules.Then,usingonlysystemin[2]achievescompetitiveresultsinbothtextsimpleoff-the-

5、shelfmethods,weintegratethesetwodetectionandcharacterrecognitionusingasimpleandmodulesintoafullend-to-end,lexicon-driven,scenescalablefeaturelearningarchitectureincorporatingverytextrecognitionsystemthatachievesstate-of-the-artlittlehand-engineeringa

6、ndpriorknowledge.performanceonstandardbenchmarks,namelyStreetWeintegratetheselearnedfeaturesintoalarge,ViewTextandICDAR2003.discriminatively-trainedconvolutionalneuralnetwork(CNN).CNNshaveenjoyedmanysuccessesinsimi-larproblemssuchashandwritingrecogni

7、tion[8],visual1Introductionobjectrecognition[1],andcharacterrecognition[16].Byleveragingtherepresentationalpowerofthesenet-Extractingtextualinformationfromnaturalimagesworks,weareabletotrainhighlyaccuratetextdetectionisachallengingproblemwithmanyprac

8、ticalapplica-andcharacterrecognitionmodules.Usingthesemod-tions.Unlikecharacterrecognitionforscanneddocu-ules,wecanbuildanend-to-endsystemwithonlysim-ments,recognizingtextinunconstrainedimagesiscom-plepost-processingtechniqueslikenon-maximalsup-plica

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。