@[NIPS 2010 Andrew] Tiled Convolutional Neural Networks

@[NIPS 2010 Andrew] Tiled Convolutional Neural Networks

ID:40702096

大小:901.76 KB

页数:9页

时间:2019-08-06

@[NIPS 2010 Andrew] Tiled Convolutional Neural Networks_第1页
@[NIPS 2010 Andrew] Tiled Convolutional Neural Networks_第2页
@[NIPS 2010 Andrew] Tiled Convolutional Neural Networks_第3页
@[NIPS 2010 Andrew] Tiled Convolutional Neural Networks_第4页
@[NIPS 2010 Andrew] Tiled Convolutional Neural Networks_第5页
资源描述:

《@[NIPS 2010 Andrew] Tiled Convolutional Neural Networks》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、TiledconvolutionalneuralnetworksQuocV.Le,JiquanNgiam,ZhenghaoChen,DanielChia,PangWeiKoh,AndrewY.NgComputerScienceDepartment,StanfordUniversity{quocle,jngiam,zhenghao,danchia,pangwei,ang}@cs.stanford.eduAbstractConvolutionalneuralnetworks(CNNs)havebeensuccessfullyappliedtomanytaskssuchasdig

2、itandobjectrecognition.Usingconvolutional(tied)weightssignificantlyreducesthenumberofparametersthathavetobelearned,andalsoallowstranslationalinvariancetobehard-codedintothearchitecture.Inthispa-per,weconsidertheproblemoflearninginvariances,ratherthanrelyingonhard-coding.Weproposetiledconvol

3、utionneuralnetworks(TiledCNNs),whichusearegular“tiled”patternoftiedweightsthatdoesnotrequirethatadjacenthiddenunitsshareidenticalweights,butinsteadrequiresonlythathiddenunitskstepsawayfromeachothertohavetiedweights.Bypoolingoverneighboringunits,thisarchitectureisabletolearncomplexinvarianc

4、es(suchasscaleandrotationalinvariance)beyondtranslationalinvariance.Further,italsoenjoysmuchofCNNs'advantageofhavingarelativelysmallnumberoflearnedparameters(suchaseaseoflearningandgreaterscalability).WeprovideanefficientlearningalgorithmforTiledCNNsbasedonTopographicICA,andshowthatlearning

5、complexinvariantfeaturesallowsustoachievehighlycompetitiveresultsforboththeNORBandCIFAR-10datasets.1IntroductionConvolutionalneuralnetworks(CNNs)[1]havebeensuccessfullyappliedtomanyrecognitiontasks.Thesetasksincludedigitrecognition(MNISTdataset[2]),objectrecognition(NORBdataset[3]),andnatu

6、rallanguageprocessing[4].CNNstaketranslatedversionsofthesameba-sisfunction,and“pool”overthemtobuildtranslationalinvariantfeatures.Bysharingthesamebasisfunctionacrossdifferentimagelocations(weight-tying),CNNshavesignificantlyfewerlearn-ableparameterswhichmakesitpossibletotrainthemwithfewerex

7、amplesthanifentirelydifferentbasisfunctionswerelearnedatdifferentlocations(untiedweights).Furthermore,CNNsnaturallyenjoytranslationalinvariance,sincethisishard-codedintothenetworkarchitecture.However,onedisadvantageofthishard-codingapproachisthatthepoolingarch

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。