Towards End-To-End Text Spotting With Convolutional Recurrent Neural Networks

Towards End-To-End Text Spotting With Convolutional Recurrent Neural Networks

ID:40728979

大小:1002.49 KB

页数:9页

时间:2019-08-06

Towards End-To-End Text Spotting With Convolutional Recurrent Neural Networks_第1页
Towards End-To-End Text Spotting With Convolutional Recurrent Neural Networks_第2页
Towards End-To-End Text Spotting With Convolutional Recurrent Neural Networks_第3页
Towards End-To-End Text Spotting With Convolutional Recurrent Neural Networks_第4页
Towards End-To-End Text Spotting With Convolutional Recurrent Neural Networks_第5页
资源描述:

《Towards End-To-End Text Spotting With Convolutional Recurrent Neural Networks》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、TowardsEnd-to-endTextSpottingwithConvolutionalRecurrentNeuralNetworksHuiLi1∗,PengWang2,1∗,ChunhuaShen11TheUniversityofAdelaide,andAustralianCentreforRoboticVision2NorthwesternPolytechnicalUniversity,Chinae-mail:{hui.li02,chunhua.shen}@adelaide.edu.au,peng.wang@nwpu.edu.

2、cnAbstractregions.Thenwordrecognitionisperformedoncroppedboundingboxesusingdifferentapproaches,followedbyInthiswork,wejointlyaddresstheproblemoftextde-wordseparationorcharactergrouping.Anumberoftech-tectionandrecognitioninnaturalsceneimagesbasedonniquesarealsodevelopedw

3、hichsolelyfocusontextdetec-convolutionalrecurrentneuralnetworks.Weproposeationorwordrecognition.However,thetasksofworddetec-unifiednetworkthatsimultaneouslylocalizesandrecog-tionandrecognitionarehighlycorrelated.Firstly,thefea-nizestextwithasingleforwardpass,avoidinginte

4、rmediatetureinformationcanbesharedbetweenthem.Inaddition,processes,suchasimagecropping,featurere-calculation,thesetwotaskscancomplementeachother:detectingtextwordseparation,andcharactergrouping.Incontrasttoex-regionsaccuratelyhelpsimproverecognitionperformance,istingapp

5、roachesthatconsidertextdetectionandrecogni-andrecognitionoutputscanbeusedtorefinedetectionre-tionastwodistincttasksandtacklethemonebyone,thesults.proposedframeworksettlesthesetwotasksconcurrently.Tothisend,weproposeanend-to-endtrainabletextspot-Thewholeframeworkcanbetrai

6、nedend-to-end,requir-ter,whichjointlydetectsandrecognizeswordsinnaturalingonlyimages,ground-truthboundingboxesandtextla-sceneimages.Anoverviewofthenetworkarchitectureisbels.TheconvolutionalfeaturesarecalculatedonlyoncepresentedinFigure1.Itconsistsofseveralconvolutionala

7、ndsharedbybothdetectionandrecognition,whichsaveslayers,aregionproposalnetworktailoredspecificallyforprocessingtime.Throughmulti-tasktraining,thelearnedtext(refertoasTextProposalNetwork,TPN),aRecurrentfeaturesbecomemoreinformativeandimprovestheoverallNeuralNetwork(RNN)enc

8、oderforembeddingproposalsperformance.Ourproposedmethodhasachievedcompeti-ofvaryingsizestofixed-lengthvectors,mu

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。