[ICML 2009 Honglak, Andrew] Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations

[ICML 2009 Honglak, Andrew] Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations

ID:40702386

大小:1.33 MB

页数:8页

时间:2019-08-06

[ICML 2009 Honglak, Andrew] Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations_第1页
[ICML 2009 Honglak, Andrew] Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations_第2页
[ICML 2009 Honglak, Andrew] Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations_第3页
[ICML 2009 Honglak, Andrew] Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations_第4页
[ICML 2009 Honglak, Andrew] Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations_第5页
资源描述:

《[ICML 2009 Honglak, Andrew] Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、ConvolutionalDeepBeliefNetworksforScalableUnsupervisedLearningofHierarchicalRepresentationsHonglakLeehllee@cs.stanford.eduRogerGrossergrosse@cs.stanford.eduRajeshRanganathrajeshr@cs.stanford.eduAndrewY.Ngang@cs.stanford.eduComputerScienceDepartment,StanfordUnive

2、rsity,Stanford,CA94305,USAAbstractlower-levelambiguitiesintheimageorinfertheloca-Therehasbeenmuchinterestinunsuper-tionsofhiddenobjectparts.visedlearningofhierarchicalgenerativemod-Deeparchitecturesconsistoffeaturedetectorunitsar-elssuchasdeepbeliefnetworks.Scal

3、ingrangedinlayers.Lowerlayersdetectsimplefeaturessuchmodelstofull-sized,high-dimensionalandfeedintohigherlayers,whichinturndetectmoreimagesremainsadicultproblem.Toad-complexfeatures.Therehavebeenseveralapproachesdressthisproblem,wepresenttheconvolu-tolearningde

4、epnetworks(LeCunetal.,1989;Bengiotionaldeepbeliefnetwork,ahierarchicalgen-etal.,2006;Ranzatoetal.,2006;Hintonetal.,2006).erativemodelwhichscalestorealisticimageInparticular,thedeepbeliefnetwork(DBN)(Hintonsizes.Thismodelistranslation-invariantandetal.,2006)isamu

5、ltilayergenerativemodelwheresupportsecientbottom-upandtop-downeachlayerencodesstatisticaldependenciesamongtheprobabilisticinference.Keytoourapproachunitsinthelayerbelowit;itistrainedto(approxi-isprobabilisticmax-pooling,anoveltechniquemately)maximizethelikeliho

6、odofitstrainingdata.whichshrinkstherepresentationsofhigherDBNshavebeensuccessfullyusedtolearnhigh-levellayersinaprobabilisticallysoundway.Ourstructureinawidevarietyofdomains,includinghand-experimentsshowthatthealgorithmlearnswrittendigits(Hintonetal.,2006)andhum

7、anmotionusefulhigh-levelvisualfeatures,suchasob-capturedata(Tayloretal.,2007).Webuilduponthejectparts,fromunlabeledimagesofobjectsDBNinthispaperbecauseweareinterestedinlearn-andnaturalscenes.Wedemonstrateexcel-ingagenerativemodelofimageswhichcanbetrainedlentperf

8、ormanceonseveralvisualrecogni-inapurelyunsupervisedmanner.tiontasksandshowthatourmodelcanper-formhierarchical(bottom-upandtop-down)WhileDBNshavebeensuccessfulincontro

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。