Very Deep Convolutional Networks for Natural Language Processing

Very Deep Convolutional Networks for Natural Language Processing

ID:40729540

大小:128.16 KB

页数:9页

时间:2019-08-06

Very Deep Convolutional Networks for Natural Language Processing_第1页
Very Deep Convolutional Networks for Natural Language Processing_第2页
Very Deep Convolutional Networks for Natural Language Processing_第3页
Very Deep Convolutional Networks for Natural Language Processing_第4页
Very Deep Convolutional Networks for Natural Language Processing_第5页
资源描述:

《Very Deep Convolutional Networks for Natural Language Processing》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、VeryDeepConvolutionalNetworksforNaturalLanguageProcessingAlexisConneauHolgerSchwenkYannLeCunFacebookAIResearchFacebookAIResearchFacebookAIResearchaconneau@fb.comschwenk@fb.comyann@fb.comLoïcBarreauLIUM,UniversityofLeMans,Franceloic.barrault@univ-lemans.frAbstract

2、ThedominantapproachformanyNLPtasksarerecurrentneuralnetworks,inpar-ticularLSTMs,andconvolutionalneuralnetworks.However,thesearchitecturesarerathershallowincomparisontothedeepconvolutionalnetworkswhichareverysuccessfulincomputervision.Wepresentanewarchitecturefort

3、extprocess-ingwhichoperatesdirectlyonthecharacterlevelandusesonlysmallconvolutionsandpoolingoperations.Weareabletoshowthattheperformanceofthismodelincreaseswiththedepth:usingupto29convolutionallayers,wereportsignificantimprovementsoverthestate-of-the-artonseveralp

4、ublictextclassificationtasks.Tothebestofourknowledge,thisisthefirsttimethatverydeepconvolutionalnetshavebeenappliedtoNLP.1IntroductionThegoalofnaturallanguageprocessing(NLP)istoprocesstextwithcomputersinordertoanalyzeit,toextractinformationandeventuallytorepresentt

5、hesameinformationdifferently.Wemaywanttoassociatecategoriestopartsofthetext(e.g.POStaggingorsentimentanalysis),structuretextdifferently(e.g.parsing),orconvertittosomeotherformwhichpreservesallorpartofthecontentarXiv:1606.01781v1[cs.CL]6Jun2016(e.g.machinetranslat

6、ion,summarization).Thelevelofgranularityofthisprocessingcanrangefromindividualcharactersorwordsuptowholesentencesorevenparagraphs.Afteracoupleofpioneerworks([2,3,4]amongothers),theuseofneuralnetworksforNLPapplica-tionsisattractinghugeinterestintheresearchcommunit

7、yandtheyaresystematicallyappliedtoallNLPtasks.However,whiletheuseof(deep)neuralnetworksinNLPhasshownverygoodresultsformanytasks,itseemsthattheyhavenotyetreachedtheleveltooutperformthestate-of-the-artbyalargemargin,asitwasobservedincomputervisionandspeechrecogniti

8、on.Convolutionalneuralnetworks,inshortConvNets,areverysuccessfulincomputervision.Inearlyapproachestocomputervision,handcraftedfeatureswereused,forinstance“scal

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。