Accelerating Very Deep Convolutional

Accelerating Very Deep Convolutional

ID:40706230

大小:657.10 KB

页数:14页

时间:2019-08-06

Accelerating Very Deep Convolutional_第1页
Accelerating Very Deep Convolutional_第2页
Accelerating Very Deep Convolutional_第3页
Accelerating Very Deep Convolutional_第4页
Accelerating Very Deep Convolutional_第5页
资源描述:

《Accelerating Very Deep Convolutional》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、1AcceleratingVeryDeepConvolutionalNetworksforClassificationandDetectionXiangyuZhang,JianhuaZou,KaimingHey,andJianSunAbstract—Thispaperaimstoacceleratethetest-timecomputationofconvolutionalneuralnetworks(CNNs),especiallyverydeepCNNs[1]thathavesubstantiallyimpactedthecomputervisioncomm

2、unity.Unlikepreviousmethodsthataredesignedforapproximatinglinearfiltersorlinearresponses,ourmethodtakesthenonlinearunitsintoaccount.Wedevelopaneffectivesolutiontotheresultingnonlinearoptimizationproblemwithouttheneedofstochasticgradientdescent(SGD).Moreimportantly,whilepreviousmethod

3、smainlyfocusonoptimizingoneortwolayers,ournonlinearmethodenablesanasymmetricreconstructionthatreducestherapidlyaccumulatederrorwhenmultiple(e.g.,10)layersareapproximated.ForthewidelyusedverydeepVGG-16model[1],ourmethodachievesawhole-modelspeedupof4withmerelya0.3%increaseoftop-5err

4、orinImageNetclassification.Our4acceleratedVGG-16modelalsoshowsagracefulaccuracydegradationforobjectdetectionwhenpluggedintotheFastR-CNNdetector[2].IndexTerms—ConvolutionalNeuralNetworks,Acceleration,ImageClassification,ObjectDetectionF1INTRODUCTIONtheacceleratednetworksasgenericfeatu

5、reextractorsforotherrecognitiontasks[2],[12]remainunclear.TheaccuracyofconvolutionalneuralnetworksItisnontrivialtospeedupwhole,verydeepmodels(CNNs)[3],[4]hasbeencontinuouslyimproving[5],forcomplextaskslikeImageNetclassification.Acceler-[6],[7],[1],[8],butthecomputationalcostoftheseat

6、ionalgorithmsinvolvenotonlythedecompositionnetworksalsoincreasessignificantly.Forexample,theoflayers,butalsotheoptimizationsolutionstotheverydeepVGGmodels[1],whichhavewitnesseddecomposition.Data(response)reconstructionsolversgreatsuccessinawiderangeofrecognitiontasks[9],[17]basedonst

7、ochasticgradientdescent(SGD)and[2],[10],[11],[12],[13],[14],aresubstantiallyslowerbackpropagationworkwellforsimplertaskssuchthanearliermodels[4],[5].Real-worldsystemsmayascharacterclassification[17],butarelesseffectivesufferfromthelowspeedofthesenetworks.ForforcomplexImageNetmodels(a

8、swewilldiscussedexa

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。