Learning a Deep Convolutional Network for image super resolution

Learning a Deep Convolutional Network for image super resolution

ID:40720093

大小:2.79 MB

页数:16页

时间:2019-08-06

Learning a Deep Convolutional Network for image super resolution_第1页
Learning a Deep Convolutional Network for image super resolution_第2页
Learning a Deep Convolutional Network for image super resolution_第3页
Learning a Deep Convolutional Network for image super resolution_第4页
Learning a Deep Convolutional Network for image super resolution_第5页
资源描述:

《Learning a Deep Convolutional Network for image super resolution》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、LearningaDeepConvolutionalNetworkforImageSuper-ResolutionChaoDong1,ChenChangeLoy1,KaimingHe2,andXiaoouTang11DepartmentofInformationEngineering,TheChineseUniversityofHongKong,China2MicrosoftResearchAsia,Beijing,ChinaAbstract.Weproposeadeeplearningmethodforsingleimagesuper-resolution(SR).Ourmethoddir

2、ectlylearnsanend-to-endmappingbe-tweenthelow/high-resolutionimages.Themappingisrepresentedasadeepconvolutionalneuralnetwork(CNN)[15]thattakesthelow-resolutionimageastheinputandoutputsthehigh-resolutionone.Wefurthershowthattraditionalsparse-coding-basedSRmethodscanalsobeviewedasadeepconvolutionalnet

3、work.Butunliketraditionalmeth-odsthathandleeachcomponentseparately,ourmethodjointlyoptimizesalllayers.OurdeepCNNhasalightweightstructure,yetdemonstratesstate-of-the-artrestorationquality,andachievesfastspeedforpracticalon-lineusage.Keywords:Super-resolution,deepconvolutionalneuralnetworks.1Introduc

4、tionSingleimagesuper-resolution(SR)[11]isaclassicalproblemincomputervision.Recentstate-of-the-artmethodsforsingleimagesuper-resolutionaremostlyexample-based.Thesemethodseitherexploitinternalsimilaritiesofthesameim-age[7,10,23],orlearnmappingfunctionsfromexternallow-andhigh-resolutionexemplarpairs[2

5、,4,9,13,20,24,25,26,28].Theexternalexample-basedmethodsareoftenprovidedwithabundantsamples,butarechallengedbythedifficultiesofeffectivelyandcompactlymodelingthedata.Thesparse-coding-basedmethod[25,26]isoneoftherepresentativemeth-odsforexternalexample-basedimagesuper-resolution.Thismethodinvolvessevera

6、lstepsinitspipeline.First,overlappingpatchesaredenselyextractedfromtheimageandpre-processed(e.g.,subtractingmean).Thesepatchesarethenencodedbyalow-resolutiondictionary.Thesparsecoefficientsarepassedintoahigh-resolutiondictionaryforreconstructinghigh-resolutionpatches.Theoverlappingreconstructedpatche

7、sareaggregated(oraveraged)toproducetheoutput.PreviousSRmethodspayparticularattentiontolearningandoptimiz-ingthedictionaries[25,26]oralternativewaysofmodelingthem[4,2].However,therestofthestepsinthepipelineh

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。