2013.Image super-resolution using local learnable kernel regression

2013.Image super-resolution using local learnable kernel regression

ID:40021823

大小:4.28 MB

页数:12页

时间:2019-07-17

2013.Image super-resolution using local learnable kernel regression_第1页
2013.Image super-resolution using local learnable kernel regression_第2页
2013.Image super-resolution using local learnable kernel regression_第3页
2013.Image super-resolution using local learnable kernel regression_第4页
2013.Image super-resolution using local learnable kernel regression_第5页
资源描述:

《2013.Image super-resolution using local learnable kernel regression》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、ImageSuper-ResolutionUsingLocalLearnableKernelRegressionRenjieLiaoandZengchangQinIntelligentComputingandMachineLearningLabSchoolofAutomationScienceandElectricalEngineeringBeihangUniversity,Beijing,Chinalrjconan@gmail.com,zcqin@buaa.edu.cnAbstract.Inthispaper,weaddresstheproble

2、moflearning-basedim-agesuper-resolutionandproposeanovelapproachcalledLocalLearnableKernelRegression(LLKR).Theproposedmodelemploysalocalmet-riclearningmethodtoimprovethekernelregressionforreconstructinghighresolutionimages.WeformulatethelearningproblemasseekingmultipleoptimalMa

3、halanobismetricstominimizethetotalkernelre-gressionerrorsonthetrainingimages.Throughlearninglocalmetricsinthespaceoflowresolutionimagepatches,ourmethodiscapabletobuildaprecisedata-adaptivekernelregressionmodelinthespaceofhighresolutionpatches.Sincethelocalmetricssplitthewholed

4、atasetintoseveralsubspacesandthetrainingprocesscanbeexecutedoff-line,ourmethodisveryefficientatruntime.Wedemonstratethatthenewdevel-opedmethodiscomparableorevenoutperformsothersuper-resolutionalgorithmsonbenchmarktestimages.Theexperimentalresultsalsoshowthatouralgorithmcanstillac

5、hieveagoodperformanceevenwithalargemagnificationfactor.1IntroductionThebasicideaofSuper-Resolutionistoestimateahighresolution(HR)imagefromasingleorseveraloriginallowresolution(LR)images.Itisaninherentlyill-posedinverseproblemsincethemappingbetweenHRimageandLRimageismany-to-onea

6、ndmuchinformationislostintheHR-to-LRprocess.Variousmethodshavebeenproposedtosolvethisunderdeterminedmapping.Roughly,theycanbedividedintothreemajorcategories:(1)InterpolationbasedmethodsthatgenerateHRimageusingsingleLRimage[6,7].(2)ReconstructionbasedmethodsusingmultipleLRimage

7、swithsomesmoothnesspriors[8,9].And(3)learningbasedmethods(orexamplebasedmethods)thatusealargetrainingsetofHR/LRpatchpairs[10,19].Thoughtheimplementationofinterpolationbasedmethodsareveryfast,theyareunabletoproducesharpedgesandcleardetails.Asforconventionalreconstructionbasedme

8、thods,sincetheaccuratesubpixelmotionestimationisextremelydiffic

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。