欢迎来到天天文库
浏览记录
ID:40021823
大小:4.28 MB
页数:12页
时间:2019-07-17
《2013.Image super-resolution using local learnable kernel regression》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、ImageSuper-ResolutionUsingLocalLearnableKernelRegressionRenjieLiaoandZengchangQinIntelligentComputingandMachineLearningLabSchoolofAutomationScienceandElectricalEngineeringBeihangUniversity,Beijing,Chinalrjconan@gmail.com,zcqin@buaa.edu.cnAbstract.Inthispaper,weaddresstheproble
2、moflearning-basedim-agesuper-resolutionandproposeanovelapproachcalledLocalLearnableKernelRegression(LLKR).Theproposedmodelemploysalocalmet-riclearningmethodtoimprovethekernelregressionforreconstructinghighresolutionimages.WeformulatethelearningproblemasseekingmultipleoptimalMa
3、halanobismetricstominimizethetotalkernelre-gressionerrorsonthetrainingimages.Throughlearninglocalmetricsinthespaceoflowresolutionimagepatches,ourmethodiscapabletobuildaprecisedata-adaptivekernelregressionmodelinthespaceofhighresolutionpatches.Sincethelocalmetricssplitthewholed
4、atasetintoseveralsubspacesandthetrainingprocesscanbeexecutedoff-line,ourmethodisveryefficientatruntime.Wedemonstratethatthenewdevel-opedmethodiscomparableorevenoutperformsothersuper-resolutionalgorithmsonbenchmarktestimages.Theexperimentalresultsalsoshowthatouralgorithmcanstillac
5、hieveagoodperformanceevenwithalargemagnificationfactor.1IntroductionThebasicideaofSuper-Resolutionistoestimateahighresolution(HR)imagefromasingleorseveraloriginallowresolution(LR)images.Itisaninherentlyill-posedinverseproblemsincethemappingbetweenHRimageandLRimageismany-to-onea
6、ndmuchinformationislostintheHR-to-LRprocess.Variousmethodshavebeenproposedtosolvethisunderdeterminedmapping.Roughly,theycanbedividedintothreemajorcategories:(1)InterpolationbasedmethodsthatgenerateHRimageusingsingleLRimage[6,7].(2)ReconstructionbasedmethodsusingmultipleLRimage
7、swithsomesmoothnesspriors[8,9].And(3)learningbasedmethods(orexamplebasedmethods)thatusealargetrainingsetofHR/LRpatchpairs[10,19].Thoughtheimplementationofinterpolationbasedmethodsareveryfast,theyareunabletoproducesharpedgesandcleardetails.Asforconventionalreconstructionbasedme
8、thods,sincetheaccuratesubpixelmotionestimationisextremelydiffic
此文档下载收益归作者所有