资源描述:
《1998.Local linear quantile regression》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、Thisarticlewasdownloadedby:[UniversityTownLibraryofShenzhen]On:03July2013,At:18:56Publisher:Taylor&FrancisInformaLtdRegisteredinEnglandandWalesRegisteredNumber:1072954Registeredoffice:MortimerHouse,37-41MortimerStreet,LondonW1T3JH,UKJournaloftheAmericanStatisticalAssocia
2、tionPublicationdetails,includinginstructionsforauthorsandsubscriptioninformation:http://www.tandfonline.com/loi/uasa20LocalLinearQuantileRegressionaaKemingYu&M.C.JonesaDepartmentofStatistics,TheOpenUniversity,WaltonHall,MiltonKeynes,MK76AA,U.K.Publishedonline:17Feb2012.T
3、ocitethisarticle:KemingYu&M.C.Jones(1998)LocalLinearQuantileRegression,JournaloftheAmericanStatisticalAssociation,93:441,228-237Tolinktothisarticle:http://dx.doi.org/10.1080/01621459.1998.10474104PLEASESCROLLDOWNFORARTICLETaylor&Francismakeseveryefforttoensuretheaccuracy
4、ofalltheinformation(the“Content”)containedinthepublicationsonourplatform.However,Taylor&Francis,ouragents,andourlicensorsmakenorepresentationsorwarrantieswhatsoeverastotheaccuracy,completeness,orsuitabilityforanypurposeoftheContent.Anyopinionsandviewsexpressedinthispubli
5、cationaretheopinionsandviewsoftheauthors,andarenottheviewsoforendorsedbyTaylor&Francis.TheaccuracyoftheContentshouldnotberelieduponandshouldbeindependentlyverifiedwithprimarysourcesofinformation.TaylorandFrancisshallnotbeliableforanylosses,actions,claims,proceedings,dema
6、nds,costs,expenses,damages,andotherliabilitieswhatsoeverorhowsoevercausedarisingdirectlyorindirectlyinconnectionwith,inrelationtoorarisingoutoftheuseoftheContent.Thisarticlemaybeusedforresearch,teaching,andprivatestudypurposes.Anysubstantialorsystematicreproduction,redis
7、tribution,reselling,loan,sub-licensing,systematicsupply,ordistributioninanyformtoanyoneisexpresslyforbidden.Terms&Conditionsofaccessandusecanbefoundathttp://www.tandfonline.com/page/terms-and-conditionsLocalLinearQuantileRegressionKerningYuandM.C.JONESInthisarticlewestud
8、ynonparametricregressionquantileestimationbykernelweightedlocallinearfitting.Twosuchestimatorsareconsid